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Preface

The term computer graphics roughly refers to the field of study that deals with the display

mechanism (the hardware and software) of a computer. In the early days, for most of us, a

computer meant what we got to see on the monitor. Then came the laptops, in which the

display and the CPU tower (along with the peripheral keyboard unit) were combined into

a single and compact unit for easy portability. The cathode ray tube (CRT) displays were

replaced by the liquid crystal display (LCD) technology. However, the idea of computer was

still restricted to the display screen for a majority of the users.

For the younger generation, the personal computer (PC) is no longer a ‘computer’. It is

replaced by a plethora of devices, although the laptops have managed to retain their charm

and appeal due to portability. These devices come in various shapes and sizes with varying

degrees of functionality. The most popular of these is the ubiquitous smartphone. Although

much smaller in size compared to a PC, smartphones are similar to very powerful PCs of the

yesteryears; with powerful multicore processing units, high-resolution displays, and large

memory. Then we have the tablets (or tabs), which are slightly larger in size (although still

much smaller than a PC), and the fablets, having features of both a phone and a tab. Such

devices also include wearable computers such as the smart watch or the Google glass. Even

the televisions nowadays have many computing elements that has led to the concept of smart

TVs. This is made possible with a rapid change in technology, including display technology.

Instead of the CRT, we now have devices that use LCD, plasma panel, light-emitting diode

(LED), organic light-emitting diode (OLED), thin-film transistor (TFT), and so on, for the

design of display units.

However, regardless of the current state-of-the-art technology in computing is, the idea of

a ‘computer’ is shaped primarily by what we get to ‘see’ on the display unit of a computing

system. Since perception matters the most in the popularity of any system, it is important

for us to know the components of a computing system that give rise to this perception—the

display hardware and the associated software and algorithms. Therefore, it is very important

to learn the various aspects of computer graphics to understand the driving force behind the

massive change in consumer electronics that is sweeping the world at present.

ABOUT THE BOOK

Computer Graphics is a textbook aimed at the undergraduate students of computer science

engineering, information technology, and computer applications. It seeks to provide a thor-

ough understanding of the core concepts of computer graphics in a semester-level course.

The contents of this book are designed for a one-semester course on the subject keeping in

mind the difficulty faced by a first-time learner of the subject. The book aims to help students

in self-learning through illustrative diagrams, examples, and practice exercises.

The chapters are organized following the three-dimensional (3D) graphics pipeline stages.

In this method, students learn graphics starting from 3D concepts, making it easier to master
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vi Preface

the concepts. This is an accepted way of approaching the subject although it is in contrast

with the common methodology followed in the existing literature, in which the students learn

the two-dimensional (2D) concepts first and then are introduced to the 3D concepts.

KEY FEATURES

• Follows the 3D graphics pipeline-based discussion

• Provides a separate chapter on the applications of computer graphics

• Supports concepts through numerous illustrative diagrams and images

• Provides a large number of worked-out examples, algorithms, and pseudocodes at

appropriate places

• Contains chapter-end summary and key terms that enable quick recapitulation

ONLINE RESOURCES

The following resources are available to support the faculty using this book:

• Solutions Manual

• PowerPoint Presentations

ORGANIZATION OF THE BOOK

The chapters in this book are organized following the 3D graphics pipeline stages. In the first

chapter, the 3D graphics pipeline is explained. Subsequent chapters deal with the stages of

the pipeline, namely the object representation techniques, modeling/geometric transforma-

tions, illumination and lighting model, 3D viewing, clipping, hidden surface removal, and

scan conversion. The last few chapters of the book cover advanced topics such as graphics

hardware, multimedia, hypermedia, and computer animation, which are intended to widen

the knowledge base of the reader. The contents of these chapters are briefly described here.

Chapter 1 introduces the field to the reader. It starts with the general idea of computer

graphics and the application areas. This is followed by a brief description on the historical

development of the field. The core issues in computer graphics are presented next. In order

to illustrate the core issues and challenges, the basic graphics hardware is presented along

with the detailed description of the cathode ray tube (CRT) technology. The pipeline stages

are introduced next, followed by a brief description of each stage.

Chapter 2 deals with the first stage of the graphics pipeline, namely the object represen-

tation techniques. The widely used representation techniques are reviewed at the beginning

of the chapter, with illustrations. This is followed by a brief description of the mesh rep-

resentation, quadric surface representation, and blobby object representation, all part of the

boundary representation techniques. Splines, another boundary representation technique, are

discussed in detail in the subsequent part of the chapter. The discussion includes spline types

and sub-types, spline surface generation, and implementation of splines. The space partition-

based representations that include the concept of voxels, the octree, the quadtree, the BSP

method, and constructive solid geometry (CSG) are described next. Advanced representation
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techniques such as fractals, particle systems, skeleton model, and the scene graphs are intro-

duced in this chapter. The chapter ends with a comparative discussion among the various

methods of representations.

Chapter 3 describes the second stage of the graphics pipeline—modeling transformation.

The core idea is introduced at the beginning. This is followed by a description of the basic

2D modeling transformations, namely translation, rotation, scaling, and shearing. The idea

of matrix representation of transformations and the homogeneous coordinate system are

introduced next. The composition of transformation as matrix multiplication is described

subsequently, followed by the description of 3D transformations. Illustrative examples are

used throughout the chapter to explain the transformations.

Chapter 4 presents the third and important stage of the graphics pipeline—the coloring

of points on the screen. It starts with the basic idea behind the idea of color computa-

tion, followed by the detailed description of a simple lighting model to compute color at

screen pixels. The components of the model, including the calculation of ambient light,

diffuse light, and specular reflection, along with the procedure to compute the attenua-

tion affects (both radial and angular) are explained in the model description. The three

shading models—flat shading, Gouraud shading, and Phong shading—are discussed next.

The mapping of the computed color to the device-supported intensity levels including the

related concepts of Gamma correction, halftoning, and dithering are described in detail

in the chapter. Numerical examples are presented throughout the chapter to illustrate the

computations.

Chapter 5 presents topics that pertain to the idea of color, its representation, and realistic

modeling. The chapter starts with a description of the physiology of our visual processing

system and the idea of color perception. This is followed by the various models used to rep-

resent colors in a computer that include the RGB, the XYZ, the CMY, and the HSV models.

The chapter ends with a description of the texture synthesis techniques that make object

surfaces appear realistic. All three texture synthesis techniques—projected texture, texture

mapping, and solid texture-are covered along with illustrative examples.

Chapter 6 deals with the fourth stage of the graphics pipeline—the viewing transforma-

tion. Viewing transformation is done through a series of steps and transformations, known

as the viewing pipeline. The stages of the viewing pipeline is introduced at the beginning of

the chapter. This is followed by the description of setting up the viewing coordinate system

and the view coordinate transformation, in that order. The projection transformation, that is,

the transformation from 3D viewing coordinate system to 2D view plane, is described next.

The concepts of the view volumes and the canonical view volumes are also introduced with

illustration. The chapter also covers the window-to viewport-transformation, the last stage

of viewing pipeline.

Before projection to view plane, unwanted portions of a 3D scene are removed or clipped-

out. The process is called clipping, which is discussed in Chapter 7. The chapter first

discusses the clipping in two dimensions. Four 2D clipping algorithms are described with

illustrative examples—the Cohen–Sutherland algorithm, the Liang–Barsky algorithm, the

Sutherland–Hodgeman algorithm, and the Weiler–Atherton algorithm—covering line and

polygon clipping in 2D. Extensions of these algorithms for clipping in three dimensions are

presented next, with illustrative examples.
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Chapter 8 presents another pre-processing step in the graphics pipeline—hidden surface

removal. This chapter deals with the procedures used to remove portions of a scene that

are hidden from the viewer with respect to the viewing position. The chapter begins with the

basic principles, known as the coherence properties. The simplest approach, namely the back

face elimination method is described next, followed by the more sophisticated approaches

that include the Z-buffer method, the A-buffer algorithm, the depth-sorting method or the

painter’s algorithm, the Warnock’s algorithm, and the octree method. All these algorithms

are presented with illustrative examples for easy understanding.

The final stage of the graphics pipeline, namely the rendering or scan conversion, is

described in Chapter 9. In this chapter, basic line scan conversion algorithms are introduced.

These include the DDA algorithm and the Bresenham’s algorithm. The line scan conversion

is followed by the circle scan conversion and the midpoint algorithm. The fill area scan

conversion algorithms are presented next including the seed fill, the flood fill, and the scan

line polygon fill algorithm. The basic idea behind the rendering of characters is dealt with

separately in the chapter. An important consideration in rendering is anti-aliasing. The core

concepts of anti-aliasing and the major approaches are outlined and discussed in this chapter.

The approaches include the area filtering and super sampling techniques.

No discussion on graphics stages shall be complete without a description of the fun-

damentals of graphics hardware and software, which is the subject matter of Chapter 10.

The chapter starts with an introduction to a generic computer graphics systems along with

its components. The various input and output devices that are the inseparable parts of an

interactive graphics system are described next. These include the current state-of-the-art

developments in the display technology; the hardcopy output systems such as the printer

and plotters; and the input devices including the mouse, keyboard, joystick, trackball, touch

input, and data gloves. The basic idea of a graphics processing unit (GPU) and GPU pro-

gramming are also covered in this chapter. The chapter includes a brief description of

graphics software along with an introduction to the OpenGL, an open source library for

graphics programming.

The last two chapters (Chapters 11 and 12) contain topics that are applications of the com-

puter graphics fundamentals. In Chapter 11, computer animation techniques are introduced.

It starts with a description of the principles that drive computer animation. The principles

are followed by brief descriptions of the major animation techniques, namely keyframing,

motion capture, physically based methods, and procedural animation techniques. The con-

cept of multimedia is introduced in Chapter 12. The chapter contains a discussion on the

related concept of hypermedia, the methods for multimedia content authoring, and the com-

ponents of multimedia including the fundamentals of digital audio and video. An important

component of multimedia is the data compression techniques. The chapter introduces the

core concepts and various techniques for video and audio data compression including the

JPEG, the H.261, and the MPEG standards.

The book has three appendices to supplement the core materials discussed in the chapter.

Appendix A contains the basic mathematical background required to understand the

topics covered in this book.

Appendix B contains an introductory discussion on the fractals, an advanced object

representation technique (briefly mentioned in Chapter 2).
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The fundamentals of the ray tracing method are covered in Appendix C. The method is

useful for photorealistic image synthesis and employs advanced rendering techniques.
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Comprehensive Coverage

The book provides a com-

prehensive coverage of topics

ranging from fundamental con-

cepts to advanced topics and

some important concepts are

highlighted in boxes within the

text.

Examples

Each chapter has numerous

examples along with solutions

interspersed within the text.

Algorithms

The text is supported by

numerous algorithms and

pseudocodes in the relevant

chapters.
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Summary

The key concepts discussed in

the chapter are highlighted at

the end of each chapter to

enable quick revision.

Key Terms

All chapters provide a list of

key terms along with their defi-

nitions for a quick recapitulation

of important terms discussed.

Review Questions

Concept-review questions and

numerical problems are pro-

vided at the end of every

chapter to test the readers’

understanding of the concepts

learnt.
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CHAPTER

1 Overview of

Computer

Graphics

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the field of computer graphics and its application areas

• Trace the historical development of the field

• Understand the various components of a computer graphics system

• Have a basic understanding of the display hardware in terms of the cathode ray tube

display technology

• Identify the stages of the image synthesis process

INTRODUCTION

With a computer, we can and usually do lot of things. We create documents and presenta-

tions. For example, consider the screenshot in Fig. 1.1 that was taken during the preparation

of this book with MS WordTM .

Notice the components present in the image. The primary components, of course, are the

(alphanumeric) characters. These characters were entered using a keyboard. While in a doc-

ument, the alphanumeric characters are the most important, there are other equally important

components that are part of any word processing software. In this figure, these components

are the menu options and the editing tool icons on top. Some of these options are shown

as text while the others are shown as images (icons). Thus, we see a mix of characters and

images that constitute the interface of a typical word processing system.

Next, consider Fig. 1.2, which is an interface of a Computer-aided Design (CAD) tool. It

shows the design of some machinery parts on a computer screen, along with some control

buttons on the right-hand side. The part itself is constructed from individual components,

with specified properties (dimension, etc.). An engineer can specify the properties of those

individual components and try to assemble them virtually on the computer screen, to check

if there is any problem in the specifications. This saves time, effort, and cost, as the engineer

does not need to actually develop a physical prototype and perform the specification checks.

This is the advantage of using a CAD tool.

Figure 1.3 shows two instances of visualization, another useful activity done with com-

puters. Figure 1.3(a) shows the visualization of a DNA molecule. It shows that, with the
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Fig. 1.1 Screen capture of a page during document preparation using MS Word

Fig. 1.2 A CAD system interface—the right-hand side contains buttons to perform various

engineering tasks

aid of computers, we could see something that is not possible with the naked eye. Such a

type of visualization is called scientific visualization, where we try to visualize things that

occur in nature and that we cannot otherwise see. Figure 1.3(b), on the other hand, shows

an instance of traffic in a computer network. Basically, it shows the status of the network

at that instant, such as the active nodes, the active links, the data flow path, and so on.

As you can see, this figure shows something, which is not natural (i.e., it shows informa-

tion about some man-made entity). Visualization of this latter kind is known as information

visualization.

Each of the aforementioned points is basically an example of the usage of computer

graphics. The spectrum of such applications is very wide. In fact, it is difficult to list
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(a)

(b)

Fig. 1.3 Two examples of visualization (a) Visualization of a DNA molecule (b) Network

visualization

all applications as virtually everything that we see around us involving computers con-

tains some applications of computer graphics. Apart from the examples we saw and the

typical desktop/laptop/tablet/palmtop applications that we traditionally refer to as com-

puters, computer graphics techniques are used in the mobile phones we use, information

kiosks at popular spots such as airports, ATMs, large displays at open air music con-

certs, air traffic control panels, the latest movies to hit the halls, and so on. The appli-

cations are so diverse and widespread that it is no exaggeration to say that for a lay-

man in this digital age, the term computer graphics has become synonymous with the

computer.

In all these examples, we see instances of images displayed on a computer screen. These

images are constructed with objects, which are basically geometric shapes (characters and

icons) with colors assigned to them. When we write a document, we are dealing with letters,

numbers, punctuations, and symbols. Each of these is an object, which is rendered on the

screen with a different style and size. In case of drawing, we deal with basic shapes such
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as circles, rectangles, curves, and so on. For animation videos or computer games, we are

dealing with virtual characters, which may or may not be human-like. The images or parts

thereof can be manipulated (interacted with) by a user with input devices such as mouse,

keyboard, joystick, and so on.

The question is how can a computer do all these stuff? We know that computers under-

stand only the binary language, that is, the language of 0s and 1s. Letters of an alpha-

bet, numbers, symbols, or characters are definitely not strings of 0s or 1s, or are they?

How we can represent such objects in a language understood by computers so that those

can be processed by the computer. How can we map from the computer’s language to

something that we can perceive (with physical properties such as shape, size, color)? In

other words, how we can create or represent, synthesize, and render imagery on a com-

puter display? This is the fundamental question that is studied in the field of computer

graphics.

This fundamental question can further be broken down into a set of four basic questions.

1. Imagery is constructed from its constituent parts. How to represent those parts?

2. How to synthesize the constituent parts to form a complete realistic imagery?

3. How to allow the users to manipulate the imagery constituents on-screen?

4. How to create the impression of motion?

Computer graphics seeks the answer to these questions. A couple of things are impor-

tant here. First, the term computer screen here is used in a very broad sense and encom-

passes all sorts of displays including small displays on the mobile devices such as smart

phones, tablets, etc., interactive white boards, interactive table tops, as well as large dis-

plays such as display walls. Obviously, these variations in displays indicate corresponding

variations in the underlying computing platforms. The second issue is, computer graph-

ics seeks efficient solutions to these questions. As the computing platforms vary, the

term efficiency refers to ways that make or try to make optimal resource usage for a

given platform. For example, displaying something on mobile phone screens requires tech-

niques that are different from displaying something on a desktop. This is because of the

differences in CPU speed, memory capacity, and power consumption issues in the two

platforms.

Let us delve a little deeper. In the early era of computers, displays constituted a termi-

nal unit capable of showing only characters. In subsequent developments, ability to show

complex 2D images was introduced. However, with the advent of technology, the memory

capacity and processor speeds of computing systems have increased greatly. Along with that,

the display technology has also improved significantly. Consequently, our ability to display

complex processes such as 3D animation in a realistic way has improved to a great extent.

There are two aspects of a 3D animation. One is to synthesize frames, the other is to com-

bine them and render in a way to generate the effects of motion. Both these are complex and

resource-intensive tasks, which are the main areas of activities in the present-day computer

graphics.

Thus, computer graphics can be described in brief as the process of rendering static

images or animation (sequence of images) on computer screens in an efficient way. In the

subsequent chapter, we shall look into the details of this process.
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Overview of Computer Graphics 5

1.1 HISTORICAL DEVELOPMENT OF THE FIELD

The evolution of the field of computer graphics is intricately linked to the evolution

of the computer itself. We cannot separately describe the history of computer graph-

ics without mentioning the developments that took place in shaping up the concept and

technology of the present-day computers. However, we shall restrict ourselves to a con-

cise account of the development of the field, mentioning only the major milestones in

the process.

The term computer graphics was first coined by William Fetter of Boeing Corp. in

1960. Sylvan Chasen of Lockheed Corp. in 1981 proposed phase-wise classification of the

development of the field. He mentioned four distinct phases in the development process.

1. Conception to birth or the gestational period (1950–1963)

2. Childhood (1964–1970)

3. Adolescence (1970–1981)

4. Adulthood (1981–)

Conception to birth The gestational period clearly coincides with the early developmental

phase of the computing technology itself. What we take for granted (interactive graphi-

cal user interphase—GUI) in any computing system today, was not present even in the

imagination of people back then. An early system from this phase, which demonstrated

the power of computer graphics, was the SAGE (Semi Automatic Ground Environment)

air defense system of the US Air Force (see Fig. 1.4). The system was a product of the

Whirlwind project (started in 1945 at the MIT, USA). In this project, the system received

positional data related to an aircraft from a radar station. This radar data was shown as an

aircraft on a CRT screen, superimposed on a geographical region drawn on the screen. An

input device, called a light gun or light pen, was used by the operators to request iden-

tification information about the aircraft (see Fig. 1.4). When the light gun was pointed

at the symbol for the plane on the screen, an event was sent to the Whirlwind, which

then sent text about the plane’s identification, speed, and direction to be displayed on

the screen.

Although the SAGE (Whirlwind) system demonstrated traces of interactive graphics (with

the use of light pens to provide input to the system), the true potential of interactive computer

graphics caught people’s attention after the development of the Sketchpad by Ivan Suther-

land in 1963, as part of his doctoral dissertation at MIT. The Sketchpad used the light pen

Fig. 1.4 SAGE system with light pen

Source: https://design.osu.edu/carlson/history/lesson2.html

https://design.osu.edu/carlson/history/lesson2.html
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6 Computer Graphics

to create engineering drawings directly on the CRT screen (see Fig. 1.5). Precise drawings

could be created, manipulated, duplicated, and stored. The Sketchpad was the first GUI long

before the term was coined and pioneered several concepts of graphical computing, includ-

ing memory structures to store objects, rubber-banding of lines, the ability to zoom in and

out on the display, and the ability to make perfect lines, corners, and joints. This achievement

made Sutherland to be acknowledged by many as the grandfather of interactive computer

graphics.

In addition to the SAGE and the Sketchpad systems, the gestational period saw devel-

opment of many other influential systems such as the first computer game (Spaceware

developed by Steve Russell and team in 1961 on a PDP-I platform) and the first CAD sys-

tem (DAC-1 by IBM, formally demonstrated in 1964 though the work started in 1959, see

Fig. 1.6).

Adolescence In 1971, Intel released the first commercial microprocessor (the 4004). This

brought in a paradigm shift in the way computers are made, having profound impact on

the advent of the field of computer graphics. In addition, the adolescence period (1970–

1981) saw both the developments of important techniques for realistic and 3D graphics as

well as several applications of the nascent field, particularly in the field of entertainment

Fig. 1.5 The use of the sketchpad software with a light pen to create precise drawings

Source: https://design.osu.edu/carlson/history/lesson3.html

Fig. 1.6 The first CAD system by IBM (called DAC-1)—DAC stands for Design Augmented

by Computer



i

i

“Chapter-1” — 2015/9/15 — 9:11 — page 7 — #7
i

i

i

i

i

i

Overview of Computer Graphics 7

and movie making, which helped to popularize the field. Notable developments during this

period include the works on lighting model, texture and bump mapping, and ray tracing.

This period also saw the making of movies such as the Westworld (1973, first movie to

make use of computer graphics) and Star Wars (1977). The worldwide success of Star Wars

demonstrated the potential of computer graphics.

Adulthood The field entered its adulthood period (1981 onwards) standing on the plat-

form created by these pioneering works and early successes. The year saw the release of

the IBM PC by IBM, which helped computers to proliferate among the masses. In order

to cater to this new and emerging market, the importance of computer graphics was felt

more intensely. The focus was shifted from graphics for expert to graphics for laymen. This

shift in focus accelerated works for developing new interfaces and interaction techniques

and eventually gave rise to a new field of study: the human-computer interaction or HCI

in short.

The development of software and hardware related to computer graphics has become

a self-sustaining cycle now. As more and more user-friendly systems emerge, they create

more and more interest among people. This in turn brings in new enthusiasm and invest-

ments on innovative systems. The cycle is certainly helped by the huge advancements in

processor technology (from CPU to GPU), storage (from MB to TB), and display (CRT to

touch screen and situated walls) technology. The technological advancements have brought

in a paradigm shift in the field. It is now possible to develop algorithms to generate photo-

realistic 3D graphics in real time. Consequently the appeal and application of computer

graphics have increased manifold. The presence of all these factors implies that the field is

growing rapidly and will continue to grow in the foreseeable future. Table 1.1 highlights the

major developments in computer graphics.

Table 1.1 Major developments in computer graphics

Phase Period Major developments

Gestational period 1950–1963 The SAGE system

The Sketchpad system

Spaceware—the first computer game

First CAD system

Childhood 1964–1970 Mainly consolidation of the earlier ideas

Adolescence 1971–1980 First commercial microprocessor by Intel Corp.

Development of techniques for 3D realistic

graphics (lighting models, bump mapping, ray

tracing)

Application of computer graphics to movie

making (Westworld, Star Wars)

Adulthood 1981–Present Release of the first personal computer (IBM

PC) in 1981
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8 Computer Graphics

1.2 MAJOR ISSUES AND CONCERNS IN COMPUTER GRAPHICS

In the formative stages of the field, primary concern was generation of 2D scenes. Although

still in use, 2D graphics is no longer the thrust area. Its place has been taken over by

3D graphics and animations. Consequently, there are three primary concerns in computer

graphics today.

Modeling Creating and representing the geometry of objects in the 3D world

Rendering Creating and displaying a 2D image of the 3D objects

Animation Describing how the image changes over time

Modeling not only deals with modeling of solid geometric objects but also modeling

of phenomena such as smoke, rain, and fire. Rendering deals with displaying the modeled

objects/scenes on the screen. The issues here are many and includes color and illumination

(simulating optics), determination of visible surfaces (with respect to a viewer position),

introducing texture patterns on object surfaces (to mimic realism), transforming from 3D

description to 2D image and so on. Imparting motion on the objects to simulate movements

is dealt with in animation. Modeling of motion and interaction between objects are the key

concerns here.

Hardware-related issues While these are primarily issues that are addressed in graphics

software, there are many hardware-related issues such as the following:

1. The quality and cost of the display technology, with the trade-off between the two being

an important consideration

2. The selection of the appropriate interaction devices (what type of input devices should

we have to make the interaction intuitive)

3. Design of specialized graphic devices to speed up the rendering process

In fact, many graphic algorithms are nowadays executed in hardware for better per-

formance. How to design such hardware at an affordable cost is the primary concern

here.

In subsequent chapters of this book, we shall explore how the issues are addressed.

However, we shall restrict ourselves primarily to the discussion of the issues addressed

in software. Nevertheless, in the next section, we shall briefly introduce the basic

architecture of a graphic system, which will aid in the understanding of further

discussions.

1.3 PRELIMINARIES: BASICS OF GRAPHICS SYSTEM

In computer graphics, what do we do? We synthesize a 2D image that can be displayed on

a screen. Figure 1.7 shows the schematic of a generic system architecture that is followed

by modern-day graphics system. In the figure, the task of image generation is relegated to a

separate system called the display controller, which takes its input from the CPU (host com-

puter in the figure) as well as external input devices (mouse, keyboard, etc.). The generated

image is stored in digital form in a video memory, which is a (dedicated) part of the memory

hierarchy of the system. The stored image is taken as input by the video controller, which
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Display screen

Video

controller

Video

memory

Display

controller

Input

devices

Host computer

Display commands Interaction data

Fig. 1.7 Generic architecture of a graphics system

converts the digital image to analog voltages that drive electro-mechanical arrangements,

which ultimately render the image on the screen.

Let us delve a little deeper to understand the working of the graphics system. The

process of generating an image for rendering is a multi-stage process, involving lots of

computation (we shall discuss these computations in subsequent parts of the book). If

all these computations are to be carried out by the CPU, then the CPU may get very

less time for doing other computational tasks. As a result, the system cannot do much

except graphics. In order to avoid such situations and increase system efficiency, the

task of rendering is usually carried out by a dedicated component of the system (the

What is a frame buffer? Why it is needed?

The video memory depicted in Fig. 1.7 for a

raster scan system is more generally known

as the frame buffer. The buffer contains one

location corresponding to each pixel location.

Thus the size is equal to the resolution of the

screen. As we mentioned, the display processor

in the display controller performs the compu-

tations and the video controller performs the

actual rendering. The display processor works

at the speed of the CPU (nanosecond scale).

However, the video controller is typically an

electro-mechanical arrangement, which is much

slower (millisecond scale). Consequently, there

is a mismatch between the speeds of these

two components. If the output of the display

controller is fed directly as the input of the

video controller, the resulting image can get

distorted as the next input may come before

the video controller finishes processing the cur-

rent input. To synchronize their operation, the

frame buffer is used. In fact, if we use a sin-

gle frame buffer, the synchronization problem

may occur. Consequently, at least two frame

buffers are used in practice (called double buffer-

ing), called primary and secondary buffers. The

video controller takes input from the primary

buffer. During this process, the display con-

troller fills up the secondary buffer. Once the

secondary buffer is filled up, it is now desig-

nated as primary and the primary becomes

secondary (role reversal) and the process

repeats.
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10 Computer Graphics

graphics card in our computers) having its own processing unit (called GPU or graphics

processing unit). The CPU, when encountering the task of displaying something, simply

assigns the task to this separate graphics unit, which is termed as the display controller

in Fig. 1.7.

Thus the display controller generates the image to be displayed on the screen. The gen-

erated image is in digital format (strings of 0s and 1s). The place where it is stored is the

video memory, which in modern systems is part of the separate graphics unit (the VRAM

in the graphic card). The display screen, however, contains picture elements or pixels (such

as phosphor dots and gas-filled cells). The pixels are arranged in the form of a grid. When

these pixels are excited by electrical means, they emit lights with specific intensities, which

give us the sensation of the colored image on the screen. The mechanism for exciting pixels

is the responsibility of the video controller, which takes as input the digital image stored in

the memory and activates suitable electro-mechanical mechanism such that the pixels can

emit light.

Graphic Devices

Graphic devices can be divided into two broad groups, based on the method used for

rendering (or excitation of pixels): (a) vector scan devices and (b) raster scan devices.

Vector scan devices In vector scan (also known as random-scan stroke-writing, or cal-

ligraphic), an image is viewed as composed of continuous geometric primitives such as

lines and curves. Clearly, this is what most of us intuitively think about images. From

the system’s perspective, the image is rendered by rendering these primitives. In other

words, a vector scan device excites only those pixels of the grid that are part of these

primitives.

Raster scan devices In contrast, in raster scan devices, the image is viewed as repre-

sented by the whole pixel grid. In order to render a raster image, it is therefore necessary

to consider all the pixels. This is achieved by considering the pixels in sequence (typically

left to right, top to bottom). In other words, the video controller starts with the top-left

pixel. It checks if the pixel needs to be excited. Accordingly, it excites the pixel or leaves

it unchanged. It then moves to the next pixel on the right and repeats the steps. It con-

tinues till it reaches the last pixel in the row. Afterward, the controller considers the first

pixel in the next (below the current) row and repeats the steps. This continues till the

right-bottom pixel of the grid. The process of such sequential consideration of the pixel

What are vector and raster graphics?

There are two terms closely related the vec-

tor and raster scan methods, namely the vector

graphics and the raster graphics. These terms

are used to indicate the nature of image rep-

resentation. When an image is represented in

terms of continuous geometric primitives such as

lines and curves, we call it vector graphics. On

the other hand, images represented in terms of

a pixel grid are known as raster graphics. Note

that they indicate only the image representation

and not the underlying hardware rendering pro-

cess,unlike the vector and random scan.Thus,we

can use a raster scan method to render a vector

graphics.
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Comparison between vector and raster graphics

As Fig. 1.8 demonstrates, in vector graphics

we need to excite only a subset of the whole

pixel grid. The problem is, designing a mecha-

nism to selectively excite pixels on a pixel grid

requires high precision and complex hardware.

As opposed to this, the scanning-based render-

ing in raster devices requires simpler hardware to

implement. Consequently, the vector devices are

costlier than raster devices. Also, due to selec-

tive exciting, vector graphics is good for render-

ing wireframe (i.e., outline) images. For complex

scenes, flicker is visible as the rendering mech-

anism has to make lots of random movements.

Raster systems do not have these problems. For

these reasons,the displays that we use are mostly

raster systems.

grid is known as scanning. Each row in the pixel grid in a scanning system is called a

scan line.

This difference between the two rendering methods is illustrated in Fig. 1.8.

Refreshing An important related concept is refreshing. The lights emitted from the pixel

elements, after excitation, starts decaying over time. As a result, the scene looks faded

on the screen. Also, since the pixels in a scene get excited at different points of time,

they do not fade in sync. Consequently, the scene looks distorted. In order to avoid such

undesirable effects, what is done is to keep on exciting the pixels periodically. Such peri-

odic excitation of the same pixels is known as refreshing. The number of times a scene

is refreshed per second is called the refresh rate, expressed in Hz (Hertz, the frequency

unit). Typical refresh rate required to give a user the perception of static image is at

least 60 Hz.

So far, we have discussed the broad concepts of the display system, namely the video

controller, the pixel grid, and the raster and vector displays. The discussion was very generic

and applies to any graphic system. Let us understand these generic concepts in terms of an

actual system, namely the cathode ray tube (CRT) displays. Although CRTs are no longer in

wide use, discussion on CRT serves pedagogical purpose as it enables us to discuss all the

relevant concepts.

(a) (b) (c)

Fig. 1.8 Difference between vector and raster scan devices (a) Image to be rendered on the

pixel grid (b) Vector scan method—only those pixels through which the line passes are excited

(black circles) (c) Raster scan method—all pixels are considered during scanning—white cir-

cles show the pixels not excited; black circles show excited pixels; arrows show scanning

direction
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12 Computer Graphics

Differentiate between refresh rate and frame rate. Does higher frame rate ensure
better image quality?

The frame rate of a computer is how often a video

processing device can calculate the intensity val-

ues for the next frame to be displayed, that is,

the rate at which the frame buffer is filled with

new intensity values. Refresh rate refers to how

often the display device can actually render the

image.

No, frame rate is not a measure of how good the

display is. Too high a frame rate is not beneficial

as any frames sent for rendering above the dis-

play’s refresh rate are not rendered and simply

lost. Thus it is important to have a display capa-

ble of high refresh rates in order to synchronize

the two.

1.3.1 CRT Displays

The CRT technology, invented in 1885 ruled the computer displays till recently. We are all

familiar with it. A typical CRT display is shown in Fig. 1.9, with a schematic of the working

of the technology. As the figure shows, CRT displays contain a long funnel-shaped vacuum

tube (that gives them the bulky shape). At one end of the tube (the back side) is a compo-

nent known as the electron gun, which is a heated metal cathode. The heating is achieved

by passing current through a filament inside the cathode. When heated, the metallic cath-

ode surface generates negatively charged electrons. Through the use of controlled deflection

mechanism (the first and second anodes in the figure with high positive voltages), these

electrons are focused into a narrow electron beam (the cathode ray). The front side of the

tube (the screen) is coated with phosphor dots (in a grid form). The electron beams are

guided towards specific points (phosphor dots) on the grid with the use of another deflec-

tion mechanism. In the deflection mechanism, the electron beam is deflected horizontally or

vertically using electrical or magnetic fields created by the vertical or horizontal deflection

plates shown in the figure. Once the beam strikes a phosphor dot, the dot emits photons

(light) with intensity proportional to that of the beam. The light emission by phosphor dots

gives us the impression of image on the screen.

Cathode

Heater
First

anode

Vertical

deflecting

plates

Graphite

coating

Control

grid

Second

anode
Horizontal

deflecting

plates

Screen

(Phosphor

coating inside)

(a) (b)

Fig. 1.9 (a) Typical CRT (b) Schematic representation of inner working of CRT
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In summary, therefore, in a CRT, the electron gun generates cathode rays, which hits

the phosphor dots to emit light, eventually giving us the sensation of image. Now, let us

go back to the terms we introduced in the previous section and try to understand those

concepts in light of the CRT displays. The video controller of Fig. 1.7 is the system

responsible for generating requisite voltage/fields to generate cathode rays of appropriate

intensity and guide the rays to hit specific phosphor dots (pixels) on the screen. In vec-

tor displays, the video controller guides the electron gun to only the pixels of interest. In

case of raster systems, the electron gun actually moves in a raster sequence (left to right,

top to bottom).

What we have discussed so far assumes that each pixel is a single phosphor dot. By vary-

ing the intensity of the cathode ray, we can generate light of different intensities. This gives

us images having different shades of gray at the most. In the case of color displays, the

arrangement is a little different. We now have three electron guns instead of one. Similarly,

each pixel position is composed of three phosphor dots, each corresponding to the red (R),

How is the resolution of a CRT screen determined?

As mentioned before, the phosphor dots (pix-

els) are arranged in the form of a grid on the

screen. This grid is typically referred to as resolu-

tion of the screen and expressed as C × R (C =

number of columns, R = number of rows). How

do we determine the resolution? This is deter-

mined on the basis of the properties of the pixels.

The intensity of the light emitted by a phosphor

dot, after it is hit by the cathode ray, follows a

certain distribution around the point of impact

(typically assumed to be the center of the pixel).

The intensity gradually falls off as we move away

from the center. This change in intensity follows

a Gaussian distribution. Now, when two pixels are

placed side by side, the lights emitted by each of

them will be distinguishable only if the overlap of

their intensity distributions is outside of 60% of

peak intensity distribution of each. Otherwise, we

will not be able to distinguish between the spots

clearly.The resolution is determined based on this

principle. The idea is illustrated in the following

figure.

Peak

intensity

Peak

intensity

Pixel

center

Pixel

center

60% of peak intensity

Illustration of emitted intensity distribution around pixels in

a CRT device
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14 Computer Graphics

green (G), and blue (B) colors. As you know, these three are called the primary colors.

Any color can be generated by mixing these three in appropriate quantities. The same pro-

cess is simulated here. Each electron gun corresponds to one of the R, G, and B dots.

By controlling electron gun intensities separately, we can generate different shades of R,

G, and B for each pixel, resulting in a new color. Figure 1.10 shows the schematic of

the process.

There are two ways computer graphics with color displays are implemented. In the first

method, the individual color information for each of the R, G, and B components of a pixel

are stored directly in the corresponding location of the frame buffer. This method is called

direct coding. Although the video controller gets the necessary information from the frame

buffer directly to drive the electron guns, the method requires a large frame buffer to store

all possible color values (that means all possible combinations of the RGB values. This set is

also known as color gamut). An alternative scheme, used primarily during the early periods

of computers when the memory was not so cheap, makes use of a color look-up table (CLT).

In this scheme, a separate look-up table (a portion of memory) is used. Each entry (row) of

the table contains a specific RGB combination. There are N such combinations (entries) in

the table. The frame buffer location in this scheme does not contain the color itself. Instead,

a pointer to the appropriate entry in the table that contains the required color is stored. The

scheme is illustrated in Fig. 1.11.

Note that the scheme is based on a premise: we only require a small fraction of the whole

color gamut in practice and we, as designers, know those colors. If this assumption is not

valid (i.e., we want to generate high quality images with large number of colors), then the

CLT method will not be of much use.

Screen

Phosphor dots

Color signals

Electron beams Shadow mask

Electron beams

Electron guns

Picture tube

Fig. 1.10 Schematic of a color CRT. The three beams generated by the three electron guns

are passed through a shadow mask—a metallic plate with microscopic holes that direct the

beams to the three phosphor dots of a pixel.
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Fig. 1.11 Schematic of color look-up scheme

1.4 GRAPHICS PIPELINE: STAGES OF RENDERING PROCESS

In the preceding discussion, we were talking about the color values stored in the frame

buffer. How are these values obtained? As we mentioned, the display processor computes

these values in stages. These stages together are known as the graphics pipeline.

Object representation At the very beginning, we need to define the objects that will be

part of the image that we see on the display. There are several object representation tech-

niques available to cater to the task of efficient creation and manipulation of images (scenes).

Modeling/Transformation The objects are defined in their own (local) coordinate system.

We need to put them together to construct the image, which is having its own coordinate

system (known as the world coordinate). This process, of putting individual objects into a

scene, is known as the modeling/geometric transformations, which is the second stage of the

pipeline.

Lighting Once the (3D) scene is constructed, the objects need to be assigned colors, which

is our third stage. Color is a psychological phenomena linked to the way light behaves (i.e.,

the laws of optics). Thus, in order to assign color to our scene, we need to implement methods

that mimic the optical laws.

Highlight the advantage of color look-up scheme over direct coding with an example.

Suppose each of the R, G, and B is represented

with 8 bits. That means we can have between 0

and 255 different shades for each of these pri-

mary colors. Consequently, the total number of

colors (the color gamut) that we can generate is

256 × 256 × 256 = 16 M.

Direct coding: The size of each frame buffer

location is 8 × 3 = 24 bits. Thus, the size of the

frame buffer for a system with resolution 100 ×

100 will be 24 × 100 × 100 = 234 Kb.

Color look-up scheme: Assume that out of 16 M

possible colors, we know that in our image we

shall use only 256 colors (combinations of R, G

and B).We shall keep these 256 colors in the look-

up table. Thus the size of the table is 256 with

each row having 24 bits color value. Each of the

table location requires 8 bits to access.Therefore,

to access any table location, we need to have 8

bits in each frame buffer location.What will be our

storage requirement for the 100 × 100 screen? It

is the frame buffer size + the table size. In other

words,the size of the frame buffer will be,(8 × 100

× 100) + (256 × 24) = 84 Kb, much less than the

234 Kb required for direct coding.
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Viewing pipeline/transformation After the aforementioned stages, we have a 3D scene

with appropriate colors. The next task is to map it to 2D device coordinate. This is analogous

of taking a snapshot of a scene with a camera. Mathematically, the snapshot taking involves

several intermediate operations. First, we set-up a camera (also called view) coordinate sys-

tem. Then the world coordinate scene is transferred to the view coordinate system (known

as the viewing transformation). From there, we transfer the scene to the 2D view plane (the

projection transformation).

For projection, we need to define a region in the viewing coordinate space (called view

volume). Objects inside the volume are projected. The objects that lie outside are removed

from the consideration for projection. The process of removing objects outside view volume

is called clipping. Along with clipping, another task is performed at this stage. When we

project, we consider a viewer position. With respect to that position, some objects will be

fully visible, some partially visible while some will be altogether invisible, although all of

the objects are within the same volume. In order to capture this viewing effect, the process

of hidden surface removal (also known as the visible surface detection) is carried out. Once

both clipping and hidden surface removal are performed, the scene is projected on the view

plane.

From the view plane, the 2D projected scene is transferred to a region on the device

coordinate system (called viewport). The process is known as the window-to-viewport

transformation.

These series of transformations (viewing, projection, and viewport) along with the tasks

of clipping and hidden surface removal is sometimes referred to as the viewing pipeline and

constitute the fourth stage of the graphics pipeline.

Scan conversion The device coordinate is a continuous space. However, the display, as

we have seen before, contains a pixel grid, which is a discrete space. Therefore, we need

to transfer the viewport on the (continuous) device coordinate to the (discrete) screen coor-

dinate system. This process is called scan conversion (also called rasterization). An added

concern here is how to minimize distortions (called aliasing effect) that result from the

transformation from continuous to discrete spaces. Anti-aliasing techniques are used during

the scan conversion stage, to minimize such distortions. Scan conversion with anti-aliasing

together forms the last and final stage of the 3D graphics pipeline.

The stages of the pipeline are shown in Fig. 1.12. We shall discuss each of these stages

in subsequent chapters of the book. However, the sequence of the stages mentioned here is

purely theoretical. In practice, the sequence may not be followed strictly. For example, the

How does object space differ from image space?

The pipeline we discussed before is object space,

as it starts from the object definition culminat-

ing in image generation. All intermediate oper-

ations are done on the objects. On the other

hand, there are methods where the operations

start from pixels (images) and moves backward

(to object definitions). Such methods are said to

work in the image space. An example is the ray-

tracing method. However, in this book, we shall

concentrate on the object space methods only.
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Object representation

(First stage)

Modeling transformation

(Second stage)

Lighting

(Third stage)

Viewing pipeline

(Fourth stage)

Scan conversion

(Fifth stage)

Viewing

transformation

View coordinate

Local to world

coordinate

World coordinate

Local coordinate

World to view

coordinate

View coordinate

3D view to 2D view

coordinates

View to device

coordinate

Device to screen

coordinate

Clipping

Hidden surface

removal

Projection

transformation

Window-to-viewport

transformation

Fig. 1.12 Stages of 3D graphics pipeline—Boxes in the second column show the substages

of the fourth stage; the third column shows the coordinate systems in which each stage

operates

assigning of colors (third stage) may be performed after projection to reduce computation.

Similarly, the hidden surface removal may be performed after projection.

1.5 ROLE OF GRAPHIC LIBRARIES

In the preceding discussions, we outlined the theoretical background of computer graphics.

However, a programmer need not always have to implement the stages of the pipeline, in

order to make the system work. Instead, the programmer can use the application program-

ming interfaces (APIs) provided by the graphics libraries to perform the pipeline stages.



i

i

“Chapter-1” — 2015/9/15 — 9:11 — page 18 — #18
i

i

i

i

i

i

18 Computer Graphics

Examples of graphic libraries include OpenGL (stands for Open source Graphics Library)

and DirectX (by Microsoft).

These APIs are essentially predefined sets of functions, which, when invoked with the

appropriate arguments, perform the specific tasks. Thus, these functions eliminate the need

for the programmer to know every detail of the underlying system (the processor, mem-

ory, and OS) to build a graphics application. For example, the function ‘xyz’ in OpenGL

assigns the color abc to a 3D point. Note that the color assignment does not require the pro-

grammer to know details such as how color is defined in the system, how such information

is stored (which portion of the memory) and accessed, how the operating system manages

the call, which processor (CPU/GPU) handles the task, and so on. Graphics applications

such as painting systems, CAD tools, video games, or animations are developed using these

functions.

SUMMARY

In this chapter, we have touched upon the background required to understand topics discussed

in later chapters. We have briefly seen some of the applications and discussed the history of

the field, along with the current issues. We also got introduced to the generic architecture of

a graphics system and brief overview of important concepts such as display controller, video

controller, frame buffer, pixels, vector and raster devices, CRT displays, and color coding meth-

ods. We shall make use of this information in the rest of the book. The other important concept

we learnt is the graphics pipeline. The rest of the book shall cover the stages of the pipeline. In

the following chapter, we introduce the first stage: the object representation techniques.

There are many online sources that give good introductory idea on computer graphics. The

website https://design.osu.edu/carlson/history/lessons.html includes in-depth discussion, with

illustrative images, of the historical evolution and application areas of computer graphics. The

textbooks on computer graphics by Hearn and Baker [2004] and Foley et al. [1995] also con-

tain comprehensive introduction to the field.There is a rich literature on application of computer

graphics techniques to various domains as diverse as aircraft design Bouquet [1978], energy

exploration Gardner and Nelson [1983], scientific data visualization Hearn and Baker [1991]

and visualization of music Mitroo et al. [1979]. A good source to learn about the past works,

current trends, and research direction in the field are the issues of the well-known journals and

conference proceedings in the field. Links to various bibliographics resources can be found in

http://www.cs.rit.edu/~ncs/graphics.html.Also see the Bibliographic Note section of Chapter 11

for more references on graphics hardware.

BIBLIOGRAPHIC NOTE

KEY TERMS

Color look-up scheme – color management scheme used in computer graphics in which the

color information is stored in a separate table.

CRT – stands for the cathode ray tube, a very popular technology till the recent times to design

display screens

Direct coding – color management scheme used in computer graphics in which the color

information is stored in the frame buffer itself

https://design.osu.edu/carlson/history/lessons.html
http://www.cs.rit.edu/~ncs/graphics.html
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Display controller – generic name given to the component of a graphics system that converts

abstract object definitions to bit strings

Electron gun – hardware to excite pixels on a CRT screen

Frame buffer – video memory of raster scan systems

Frame rate – rate (bits/second) at which the frame buffer is filled up

Graphics pipeline – set of stages in sequence that are used to synthesize an image from object

definitions

Input device – hardware for interacting with screen

Pixel – a picture element or each point on the grid used to design display screens

Refresh rate – rate (times/second) at which the screen is redrawn

Refreshing – process by which the screen is redrawn periodically

SAGE system – the first computer graphics system

Sketchpad – the first interactive computer graphics system

Vector and raster graphics – the two types of image representation techniques used in computer

graphics

Vector and raster scan – the two types of techniques used to render images on the screen

Video controller – hardware used to render the actual on-screen image from the bit strings stored

in video memory

Video memory – memory unit used to store the bit strings that represent a (synthesized) image

Visualization – the techniques to visualize real or abstract objects or events

EXERCISES

1.1 At the beginning of this chapter, we learnt a few areas of application of computer graphics.

As we mentioned, such applications are numerous. Find out at least 10 more applications

of computer graphics (excluding those mentioned at the beginning).

1.2 Suppose you are trying to develop a computer game for your iPhone. Make a list of all the

issues that are involved (Hint: combine the discussions of Sections 1.2 and 1.4).

1.3 In Figure 1.7, the generic architecture of a typical graphics system is shown. As we know,

almost all the electronic devices we see around us contain some amount of graphics.

Therefore, they can be dubbed as graphics systems. In light of the understanding of the

generic architecture, identify the corresponding components (i.e., the display, the two con-

trollers, video memory, I/O mechanism) for the following types of devices (you can select

any one commercial product belonging to each of the categories and try to find out the

name of the underlying technologies).

(a) Digital watch

(b) Smartphone

(c) Tablet

(d) ATM

(e) HD TV

1.4 Explain double buffering. Why do we need it?

1.5 While trying to display a scene on the screen, you observe too much flickering. What may

be the cause for this? How can the flickering be overcome?

1.6 In some early raster displays, refreshing was performed at 30 Hz, which was half that of

the minimum refresh rate required to avoid flicker. This was done due to technological lim-

itations as well as to reduce system cost. In order to avoid flickers in such systems, the

scan lines were divided into odd set (1, 3, 5 · · · ) and even set (2, 4, 6 · · · ). In each cycle,

only one set of lines was scanned. For example, first scan odd set, then even set, then odd

set, and so on. This method is called interlacing. List with proper explanation all the factors

that determined if the method would work.
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20 Computer Graphics

1.7 Assume you are playing an online multiplayer game on a system having a 100 × 100 color

display with 24 bits for each color. A double buffering technique is used for rendering. Your

system is receving 5 MBps of data from the server over the network. Assuming no data

loss, will you experience flicker?

1.8 What is the main assumption behind the working of the color look-up table? Suppose you

have a graphic system with a display resolution of 64 × 64. The color look-up table has

16 entries. Calculate the percentage saving of space due to the use of the table. Assume

colors are represented by 24 bits.

1.9 Discuss why vector graphics is good for drawing wire frames but not filled objects.Suppose

that you are a gaming enthusiast. Will you prefer a vector-based system or a raster-based

system?

1.10 In a raster scan system,the scanning process starts (from top-left pixel) with the application

of a vertical sync pulse (Vp). The time between the excitation of the last (right-most) pixel

in the current scan line and that of the first (left-most) pixel of the next scan line is known

as the horizontal retrace time (HT). Scanning for the next line starts with the application of

a horizontal sync pulse (Hp). The time it takes to reset the scanning process for the next

frame (i.e. the time gap between the excitation of the bottom-right pixel of the current frame

and the top-left pixel of the next frame) is known as the vertical retrace time (VT).Calculate

the desirable value of M for a CRT raster device having resolution M × 100 with HT = 5 s,

VT = 500 s and 1 s electron gun movement time between two pixels along a scan line.

1.11 Assume you have a raster device with screen resolution = 100 × 100. It is a color display

with 9 bits/pixel. What should be the access rate (i.e., time required to access each bit) of

the video memory to avoid flicker in this system?

1.12 Consider the two objects shown in Fig. 1.13(a).

We want to render a scene in which the bar (the right object in (a)) is inside the hole of

the cube (left object in (a)), as shown in (b). Discuss the tasks performed in each pipeline

stage for rendering the scene.

(a) (b)

Fig. 1.13 The object and the scene of Exercise 1.12
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CHAPTER

2 Object

Representation

Techniques

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the four broad classes of object representation techniques used in

computer graphics

• Have a basic understanding of the boundary representation techniques including

quadric surfaces and blobby object representation

• Learn in detail about the spline representation techniques covering both interpolation

and approximation splines

• Get a detailed overview of the space portioning methods-octree, BSP, and

CSG

• Get an introductory idea on advanced representation techniques including skeletal

model, scene graphs, particle systems, and fractals

• Get introduced to the issues in the section of appropriate representation technique for

a given problem

INTRODUCTION

In a computer-generated scene, objects of different shapes and sizes are present. They can

range from tiny snowflakes to complex characters. A snowflake, for example, has an elegant

shape and should not be represented with a simple sphere. Similarly, an animated character

needs to be depicted with its associated complexities so that it looks realistic. In order to

generate scenes where all these disparate objects are present, we first need to have some way

to represent them. Any representation will not work as we seek answers to the following two

questions.

1. How can we represent all these different objects with their characteris-

tic complexities so that those can be rendered realistically in a synthesized

environment?

2. How can we have a representation that makes the process of rendering efficient (i.e., can

we perform the operations of the different stages of the pipeline in ways that optimize

space and time complexities)?
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22 Computer Graphics

In order to answer these questions, a plethora of object representation techniques are used

in computer graphics. In this chapter, we shall survey and discuss the pros and cons of those

techniques.

2.1 CATEGORIZATION OF REPRESENTATION TECHNIQUES

A large number of techniques are in use in computer graphics to represent objects. We can

categorize them along the following types.

Point-sample rendering In simulating a 3D scene, we can first capture raw data such as

color, surface normal vector and depth information of different points on the scene. The cap-

turing of information is done through the use of input sensors such as range scanner, range

finder, or computer vision techniques. The information is captured in the form of points

on the scene, with each point having the information as attributes. Those points can subse-

quently be processed to generate the scene. Thus, our representation here is a set of raw data

points of the scene, each with some attribute values.

Boundary representation Some methods represent an object by representing the indi-

vidual object surfaces. The surface can be polygonal or curved. An example is shown in

Fig. 2.1, where the cube is represented as a collection of interlinked rectangles A–F.

Space partitioning In some methods, the 3D space occupied by the object is divided into

several disjoint (or non-overlapping) regions. Any point inside the object lies in exactly one

A

F

C

B

E

D

Fig. 2.1 An example of boundary representation of an object

X

(a) (b)

X

Y Y

Z Z

Fig. 2.2 Two types of sweep representations (a) Surface is represented as a square simul-

taneously translating and rotating along the X-axis (b) Object is represented as a closed

polygon revolving around the X-axis



i

i

“Chapter-2” — 2015/9/15 — 9:15 — page 23 — #3
i

i

i

i

i

i

Object Representation Techniques 23

of the regions. The space-partitioning representations are often created in a hierarchical way

in which a space is divided into several subregions, and then the same method is recursively

applied to each of the subregions. A common way to depict the regions is to organize them

in the form of a tree, called a space-partitioning tree.

Sweep representation Two sweep representation techniques used in computer graph-

ics are the sweep surface and surface of revolution. In sweep surface, 3D surfaces are

obtained by traversing an entity such as a point, line, polygon, or curve, along a path

in space in a specified manner. When a 2D entity is rotated around an axis, we get a

surface of revolution (a special case of sweep surfaces). These concepts are illustrated

in Fig. 2.2.

3D object representation techniques

Point-sample

rendering

Mesh

Parametric

Implicit

Octree

BSP

CSG

Sweep surface

Surface of revolution

Application-specific

Scene graphs

Skeleton

Advanced modeling

Boundary

representation

Space-partitioning

representation

Sweep

representation

Other

representations

Fig. 2.3 Different object representation techniques used in 3D computer graphics
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24 Computer Graphics

These broader categories may consist of several representation techniques. The three types

of boundary representation techniques are the mesh representation, parametric representa-

tion, and implicit representation. Space-partitioning methods include techniques such as

octrees, BSP trees, and constructive solid geometry (CSG). Apart from these broad classes,

some other techniques are used either to represent application-specific objects, or to repre-

sent a set of objects each of which has been represented using either of the three categories or

to represent complex photo-realistic objects. Fig. 2.3 summarizes these different techniques.

In subsequent sections, we shall briefly discuss about each of these techniques.

2.2 BOUNDARY REPRESENTATION TECHNIQUES

There are several ways in which an object can be represented in terms of its bounding sur-

faces. The most basic technique is to use polygons to represent surfaces. Polygonal surfaces

are represented using vertex/edge lists that store the information about all the vertices/edges

on the surface and their relationships. For polyhedral objects (i.e., objects with polygonal

surfaces), such lists are used, as shown in Fig. 2.4.

For objects having non-polygonal surfaces, the surfaces are approximated to polygonal

(triangle or simple convex polygon) meshes and the meshes are represented using ver-

tex/edge lists. The mesh representation is the most basic form of representation for any

objects of a rendered scene. All other representations are converted to mesh representation

at the end of the pipeline before the objects are rendered. Fig. 2.5 shows an example of an

object with curved surfaces represented using a triangular mesh.

One important issue in mesh representation is the extent to which a surface is tessel-

lated (i.e., how many polygons should be used to approximate surfaces). Clearly, the more

the number of polygons, the better the approximation is. However, more (coarser) subdivi-

sions also implies more storage and computation. Thus the subdivision rule is important to

optimize space and time complexities of mesh representation and usually depends on the

application and the resources available.

Although mesh representation is the most basic form of representing any object, it is not

the most convenient from the designer’s point of view. Instead of working with meshes,

Vertex list

v0

v0

v1v3v5

v6v0v2

v1v3v7

v0v2v4

v3v5v7

v0v4v6

v1v5v7

v2v4v6

0, 0, 0

0, 0, 1

1, 0, 1

1, 0, 0

1, 1, 0

0, 1, 0

0, 1, 1

1, 1, 1

v1

v1

v2

v2

v3

v3
v4

v4

v5

v5

v6

v6

v7

v7

Fig. 2.4 Example of vertex list representation. In the list, each vertex is listed along with its

coordinate and the other vertices with which it forms an edge.
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(a) (b)

Fig. 2.5 Example of mesh representation (a) Triangular mesh (b) Rendered image

designers like to use representations that mimic the actual object rather than its approxima-

tion. Implicit and parametric surface representations are high-level representation techniques

which are used to represent curved surfaces more accurately and conveniently. In implicit

representation, the surfaces are defined in terms of the implicit functional form. In para-

metric representations, surfaces points are defined in Euclidean space in terms of some

parameters. A frequently used class of objects in computer graphics, which are represented

using implicit or parametric form, are the quadric surfaces.

2.2.1 Quadric Surfaces

Objects, which (or the surface of which) are described with second-degree equations

(i.e., quadratic equations), are generally termed as quadric surfaces. Spheres are the most

commonly used among all quadric surfaces. In implicit form, we can represent a spherical

surface with radius r and centered at origin as the set of points in the Cartesian coordinate

system that satisfy the following equation (Eq. 2.1).

x2
+ y2

+ z2
= r2 (2.1)

The same surface can also be described in parametric form. For that, we require the lat-

itude and longitude angles θ and φ (see Fig. 2.6). In terms of these angles, the parametric

representation of the sphere is:

x = r cos φ cos θ,−
π

2
≤ φ ≤

π

2
y = r cos φ sin θ,−π ≤ θ ≤ π

z = r sin φ

Figure 2.7 shows another frequently used quadric surface: an ellipsoid. The implicit and

parametric form of the ellipsoid are shown assuming that the ellipsoid is centered at the

origin with radii rx, ry, and rz along the respective (X, Y, and Z) axis.

Other examples of quadric surfaces are tori, paraboloids, and hyperboloids. Sometimes,

additional parameters are introduced into the quadric surface equations to provide increased

flexibility for adjusting object shapes. Usually, two additional parameters are incorpo-

rated in quadric surface representations. These surfaces are called superquadrics such as
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Y

q

f
X

P(x, y, z)

Z

r

Fig. 2.6 Parametric coordinate (r , θ , φ) of a point on a spherical surface

Implicit form:

x

x = rx cosf cosq 

y = ry cosf sinq 

z = rz sinf

2

rx

X

Y

Z

rz

rx

ry

y

2

ry

z

2

rz

+ + − 1 = 0

Parametric form:

Fig. 2.7 An ellipsoid centered at origin represented in implicit form

superellipsoids. However, we will not go into the details of such representations. Interested

readers may refer to the reading materials mentioned in the bibliographic notes at the end of

the chapter.

2.2.2 Blobby Objects

There are some objects whose shapes show a certain degree of fluidity. That means, these

objects change their shape during motion or when they come closer to other objects.

Although the objects have curved surfaces, we can not use standard shapes to represent

them. This is since the standard shapes fail to represent the surface fluidity in a realistic

way. Such obejcts are generally referred to as blobby objects. Examples include molecular

structures, liquid and water droplets, melting objects, and animal and human muscle shapes.

There are several methods developed to represent blobby objects. Usually some distribution

function is used over a region of space.

One method is to use a combination of Gaussian density functions (sometimes called

Gaussian bumps). As we know, a Guassian density function, shown in Fig. 2.8, is charac-

terized by two parameters: the height and the standard deviation. When we combine many

such functions by varying the two parameters (plus some additional ones), we can represent

a blobby object. A surface function is then represented as,

f (x, y, z) =
∑

i

bie
−air

2
i − T = 0 (2.2)
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0

b

−a a

Fig. 2.8 A Gaussian density function or Gaussian bump, centered at the origin

Fig. 2.9 A blobby object generated with three Gaussian bumps—the dotted lines represent

the surface, whereas the solid lines show individual bumps

subject to the condition r2
i = x2

i + y2
i + z2

i . By varying ak and bk , we can generate

the desired amount of blobbiness in the individual components of the surface. If we set

bk negative, we can generate dents instead of bumps in the object. The parameter T is

some specified threshold. A blobby surface with three Gaussian density functions is shown

in Fig. 2.9.

The metaball model is another method to represent blobby objects. In this, a quadratic

density function is used (instead of the Guassian bumps in Eq. 2.2), which is of the form

f (r) =











b(1 −
3r2

d2 ), if 0 < r ≤ d
3

3
2
b(1 −

r
d

)2
, if d

3
< r ≤ d

0, if r > d

(2.3)

In Eq. 2.3, b is called the scaling factor, r is the radius of the blobby object from its cen-

ter, and d is the maximum radius of the object. In other words, d is bound on the spread

of the object around its center. However, it is very difficult or even impossible to represent

any arbitrary surface in either implicit or parametric form. A special type of parametric rep-

resentation, known as spline representation or simply splines, can be used to represent any

shapes. Owing to its widespread use in computer graphics, we discuss the concept of splines

in more details in the following section.

2.3 SPLINE REPRESENTATIONS

In order to generate complex shapes, we need to represent curves. Before we proceed

further, we should note that representation here refers to the parametric representation.
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For a curve, we represent it (or its Cartesian coordinates) using a single parameter u1

as in Eq. 2.4.

x = f1(u) (2.4a)

y = f2(u) (2.4b)

A useful analogy is to think of u as denoting time. In other words, we are drawing the

curve on a 2D Cartesian space over a period of time. At any instant of time, we place a

Cartesian point. Thus, any value of u denotes a specific instant of time, at which point we

can determine the corresponding coordinate values using Eq. 2.4. In subsequent discussions,

we shall assume this parametric representation of curve.

The question is, how can we represent a curve easily and efficiently? We can have the

curve represented as a set of small line segments. Obviously the line segments have to

be very small to make the curve look smooth. Although this method is easy, it may not

be efficient as we may have to provide a large number of points depending on the nature

of the curve. An alternative is to work out the curve equation. This certainly can provide

an easy and efficient solution. The only problem is, we may not be able to find out the

equation itself!

Let us look at the problem from a user’s perspective. As a user, we want to generate a

curve (of any shape). However, we are not interested to provide as input to the system a

(very) large number of points (to represent it as a collection of small line segments) or a pre-

cise equation of the curve (which we may not know). Instead, we may provide a limited set

of points that defines the curve (i.e., the curve passes through or nearby those points). Such

points are known as control points. We expect the system to draw the curve by interpolating

those control points that we provide.

The process of interpolation essentially refers to fitting a curve that passes through or

nearby the control points. Mathematicians generally agree that polynomial interpolation

(i.e., trying to fit a polynomial curve) is simple, efficient, and easy to manipulate among

all types of interpolation. Depending on the number of control points, we may decide on the

degree of the interpolating polynomial. For example, if two control points are given, a lin-

ear interpolation is advisable, whereas for three control points, quadratic polynomials serve

best, and so on. In general, for n+ 1 control points, we may try to fit a polynomial of degree

n, as shown in Fig. 2.10.

In order to determine the polynomial from the set of control points, we need to solve

the system of n + 1 equations shown on the right-hand side of Fig. 2.10. For a large n, the

process of interpolation clearly becomes cumbersome as we need to solve a large number

of equations (note that we need to find two separate parametric equations for x and y, for

a 2D curve). In addition, there may be another problem when we are dealing with a large

n. If the user wants to change the shape slightly (by changing one or few of the control

points), the entire curve may have to be recalculated. This is known as the problem of local

1When the parameter can have any arbitrary range of values, it is usually denoted by t. However, if the

parameter can take values only within the range [0,1], it is usually denoted by u. we will also follow this

convention.
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(u1, x1)

(un, xn)

x0 = a0 + a1u0 +....+ anu0 
n

x1 = a0 + a1u1 +....+ anu1 
n

xn = a0 + a1un +....+ anun 
n

(u0, x0) x =
i = 0

n
aiu

i
Σ

Fig. 2.10 An interpolated polynomial through a set of n input points

p0

p1

p2

p3

p4

Fig. 2.11 Example of a curve constructed by joining two polynomial pieces

controllability, that is, we are not able to change the curve locally (around the set of points

that we want to change), rather we have to change the whole curve (a new curve fitting pro-

cess). Thus, every time we want to make small changes to our interpolated curve, we have to

recompute the curve anew (by solving the set of equations). Certainly, this is not an efficient

solution.

In order to overcome the limitation of interpolation (i.e., fitting a single curve to the set

of input points), we can use a different approach. We may partition the control points into

subsets with fewer points (usually = 3). Next, we may fit lower degree polynomials to each

of these subsets. These individual polynomials of lower degree (or polynomial pieces), when

joined together, give the overall curve.

Figure 2.11 illustrates the idea of joining polynomial pieces to represent the overall curve.

In the figure, we specified five control points (p0
2 to p4). The five points are divided into two

subsets p0 p1 p2 and p2 p3 p4. Each subset is fitted with a quadratic (degree 2) polynomial.

Together, they represent the whole curve.

The idea of fitting a set of control points with several polynomials (of lower degree) than a

single higher degree polynomial is the spline representation. The curve that we get is called

a spline curve or simply spline. In graphics, it is common to use splines that are made up of

third degree (n = 3) or cubic polynomials. In subsequent discussions, we shall concentrate

on such splines only.

2.3.1 Continuity Conditions

Since we are joining several polynomials in order to create a spline representation, it is

important to ensure that they join smoothly so that the resulting curve looks smooth. The

objective can be achieved if we can make the splines conform to the continuity conditions.

Continuity conditions are of two types, namely, (a) parametric continuity and (b) geomet-

ric continuity. The nth order parametric continuity, usually denoted by Cn, states that the

2Note that each pi is basically a vector (xi, yi) representing a 2D point.
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adjoining curves meet and the first to nth order parametric derivatives of the adjoining

curve functions are equal at their common boundary. Thus, C0 indicates that the adjoin-

ing curves meet, C1 indicates that the first order parametric derivatives of the adjoining

curves at the common boundary are equal, C2 indicates that both the first and the second

order derivatives are equal, and so on. The parametric continuity conditions are sufficient,

but not necessary to ensure geometric smoothness of the spline. For that, conformation

to the geometric continuity conditions are required. The zero-order geometric continuity,

denoted as G0 is similar to C0. G1 or the first-order geometric continuity indicates that

the tangent directions at the common boundary of adjoining curves are equal, but their

magnitudes can be different. The second-order geometric continuity (G2) states that both

the tangent directions and curvatures at the common boundary of the adjoining curves

are equal.

2.3.2 Types of Splines

While conforming to the parametric or geometric continuity conditions can ensure smooth

curves, we also need to keep in mind the fact that the overall design should support local

controllability. Otherwise, the advantages of having a spline representation instead of a sin-

gle interpolated polynomial may be lost. In order to address these issues, different types of

splines are used in computer graphics. Such splines are broadly of the following two types

(illustrated in Fig. 2.12).

Interpolating splines We try to fit a spline that passes through all the control points. The

three commonly used interpolating splines are the natural cubic splines, the Hermite cubic

splines, and the Cardinal cubic splines.

Approximating splines In such splines, the curve passes closer to the control points. The

control points define the boundary (known as the convex hull), which in turn determines

the overall shape of the curve. The two common approximating splines are the cubic Bezier

curves and the cubic B-splines.

Let’s first discuss how we can represent a spline mathematically. Then, we shall delve

deeper into the two types of splines.

There are two ways commonly used to represent splines: basis matrix and the

basis/blending functions. The two are equivalent to each other. We can convert the basis

Control points Control points

Convex hull

(b)(a)

Fig. 2.12 Two types of splines (a) Interpolating spline (b) Approximating spline
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matrix representation to the basis/blending functions representation and vice versa. We shall

try to understand these representations in terms of a simple example.

2.3.3 Representation by Basis Matrix

Consider a polynomial of degree one, whose parametric form is shown in Eq. 2.5.

f (u) = a0 + u.a1 (2.5)

In Eq. 2.5, we should keep in mind that ai is a vector (aix aiy) for x and y coordinates and the

function f (u) should have the corresponding form [fx(u) or fy(u)]. For convenience, we shall

work with this compact form rather than the form for individual coordinates. We can repre-

sent Eq. 2.5 in matrix form as f (u) = U .A where U and A are the parameter and coefficient

matrices, respectively as follows.

U =
[

1 u
]

, A =

[

a0

a1

]

In order to determine the function of Eq. 2.5, we need to have at least two control points

(i.e., n+1 control points to obtain a polynomial of degree n). Let us denote those two control

points as p0 and p1. We shall make use of these points to parameterize the polynomial, which

means that we shall assume certain parameter values for these control points. For example,

we may assume that the two control points denote the values of the function at the bound-

ary values of the parameter (i.e., at u = 0 and u = 1). Then we can set up the system of

equations as shown in Eq. 2.6.

p0 = f (u = 0) = a0 + 0.a1 (2.6a)

p1 = f (u = 1) = a0 + 1.a1 (2.6b)

In matrix notation, we can express Eq. 2.6 as P = C.A (dot product of two matrices)

where the matrices P, C, and A are defined as follows.

P =

[

p0

p1

]

, C =

[

1 0

1 1

]

, A =

[

a0

a1

]

Note how the matrix C is constructed. We took the coefficients of the ai (from a1 to an

in that order) terms in each equation of the system of equations to form the correspond-

ing row (first equation for first row, etc.). Since we have obtained C by imposing certain

parameterization conditions (constraints) on the control points, C is called the constraint

matrix.

Since P = C.A, we can say that A = C−1
.P. The inverse of the constraint matrix (C−1) is

called the basis matrix B. Thus, we can express the polynomial f (u) as in Eq. 2.7.

f (u) = U .A = U .C−1
.P = U .B.P (2.7)

Derivation of Eq. 2.7 demonstrates that the basis matrix for an interpolating polynomial

that satisfies the parameterization conditions (constraints) is fixed. Hence, it can be used to
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uniquely characterize the polynomial. Since a spline is made up of polynomial pieces, if

each of these pieces are made from the same type of polynomial (i.e., degree and constraints

are the same), then the overall spline can be uniquely characterized by the basis matrix of

the polynomial pieces. That is the basis matrix representation of splines.

2.3.4 Representation by Blending Functions

If we expand the right-hand side of Eq. 2.7, we get a weighted sum of polynomials with

the control points being the weights. For our specific example (of a linear polynomial), the

expansion will result in Eq. 2.8.

f (u) = U .B.P =
[

1 u
]

[

1 0

1 1

]−1 [

p0

p1

]

= (1 − u)p0 + up1 (2.8)

The individual polynomials in the weighted sum, such as the terms 1 − u and u in Eq.

2.8, are called the basis/blending functions. As in the case of basis matrix, the blending

functions for a given polynomial are also fixed and hence can be used to characterize the

polynomial. Hence, a spline made up of several pieces of the same polynomial type, can

also be represented in terms of the blending functions of the constituent polynomials. Thus

we can say that for our linear polynomial piece that satisfies the constraints, that the two

control points represent the values of the function at the boundary values of the parameter

u, is characterized by the set of blending functions 1 − u, u. The compact representation of

a curve in terms of blending functions is shown in Eq. 2.9, where n + 1 is the number of

control points.

f (u) =

n
∑

i=0

pibi(u) (2.9)

2.3.5 Interpolating Splines: Natural, Hermite, and Cardinal Cubics

One of the first splines used in computer graphics is the natural cubic splines. As the name

suggests, the spline is made up of pieces of third degree polynomials. Each of these pieces

is defined by four control points (p0, p1, p2, and p3). The first and the last points denote the

two boundary points (i.e., for u = 0 and u = 1) of the polynomial piece while the other two

are the first and second derivatives at u = 0.

The splines support C2 continuity. In other words, p3 of the ith piece should be the same

as the p0 of the adjoining (i + 1)th piece. Also, the first and second derivatives of the ith

piece at u = 0 should be the same as that of p1 and p2 of the (i + 1)th piece.

A problem with the natural cubics is that it does not have local controllability (i.e., local

changes require re-computing the whole curve). The Hermite cubics are another type of

interpolating splines that support local controllability. However, these have only C1 conti-

nuity (implying that they give less smooth curves than natural cubics). Each cubic piece of

the Hermite splines is defined by four control points p0, p1, p2, and p3. The control points

p0 and p2 are the values of the cubic at the parameter boundaries (u = 0 and u = 1), p1 is

the first derivative of the cubic at u = 0 and p2 is the first derivative at u = 1.



i

i

“Chapter-2” — 2015/9/15 — 9:15 — page 33 — #13
i

i

i

i

i

i

Object Representation Techniques 33

Derive the basis matrix for the natural cubic splines.

Solution First, we shall identify the set of constraints for the spline from its definition, as shown

in the following set of equations.

p0 = f (u = 0) = a0 + 0.a1 + 02
.a2 + 03

.a3

p1 = f ′(u = 0) = 0 + 1.a1 + 2.01
.a2 + 3.02

.a3

p2 = f ′(u = 1) = 0 + 1.a1 + 2.11
.a2 + 3.12

.a3

p3 = f (u = 1) = a0 + 1.a1 + 12
.a2 + 13

.a3

From these equations, we can set up the constraint matrix C as we have done in the previous

section.

C =









1 0 0 0

0 1 0 0

0 0 2 0

1 1 1 1









The inverse of C is our basis matrix B. Hence, for natural cubics, the basis matrix is as below.

Bnatural = C−1
=









1 0 0 0

0 1 0 0

0 0 0.5 0

−1 −1 −0.5 1









Since the natural cubic spline is made up of cubic polynomials that follow the same constraints,

the whole spline can be represented in terms of the basis matrix, as we discussed in the previous

section.

Example 2.1

We can derive the basis matrix for the Hermite cubics in a similar way as that of the nat-

ural cubics. This process is left as an exercise. The basis matrix for Hermite cubics is given

as follows:

BHermite =









1 0 0 0

0 1 0 0

−3 −2 3 −1

2 1 −2 1









At the expense of smoothness, we can have local controllabity with the Hermite cubic

splines. However, a problem with these splines is that, we have to specify the first order

derivatives as control points for the boundary values of each piece. This puts extra burden

on the user. With the cardinal cubic spline, this problem can be overcome. Similar to the

Hermite cubics, the cardinal cubics are also made up of polynomial pieces, each of which

are defined by four control points. Among them, p1 and p2 are the boundary values of each
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p1

p0

p2

f(0) = p1

f(1) = p2

f ′(0) = 
1

2
(1 − t)(p2 − p0)

f ′(1) = 
1

2
(1 − t)(p3 − p1)

(a) (b)

Fig. 2.13 (a) Illustration of the cardinal cubic spline pieces (b) The system of equations

derived from the definition

piece (at u = 0 and u = 1). p0 and p3 are used to obtain the first order derivatives at the

boundaries of each piece, as shown in Fig. 2.13.

The term t in Fig. 2.13(b), used to obtain the derivatives is called the tension param-

eter. It determines the shape of the curve. If t = 0, the corresponding spline is called the

Catmull-Rom/Overhauser spline. Note that the cardinal cubics conform to the C1 continuity.

The basis matrix, which we can obtain using a procedure similar to the one we described

for the natural cubics, is given as follows, where S =
1−t

2
.

Bcardinal =









0 1 0 0

−S 0 S 0

2S S − 2 3 − 2S −S

−S 2 − S S − 2 S









2.3.6 Approximating Splines: Cubic Bezier Curves and B-splines

Bezier curves are among the widely used representation techniques in computer graphics.

Its name is derived from the name of the French engineer Pierre Bezier, who first used it to

design Renault car bodies. Since a Bezier cubic is an approximating spline, the polynomial

pieces do not pass through all the four control points (p0, p1, p2, and p3). Instead, each of

these pieces originates at the first control point and end at the last control point (i.e., the first

and the last control points are on the curve). The other two control points serve to deter-

mine the convex hull within which the curve lies. Moreover, using the two control points,

we can define the first order derivatives of the polynomial piece at the boundary values of

the parameter (u = 0 and u = 1), as shown in Eq. 2.10.

f ′(u = 0) = 3(p1 − p0) (2.10a)

f ′(u = 1) = 3(p3 − p2) (2.10b)

The Bezier cubics can also be described in terms of the equivalent blending function

representation, as we have seen before. The general form of the blending function based

representation of a Bezier curve with n + 1 control points is shown in Eq. 2.11.

P(u) =
∑

k=0

pkBEZk,n(u), 0 ≤ u ≤ 1 (2.11)
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Derive the basis matrix for the cubic Bezier curves.

Solution From the definition of the Bezier curves, we can establish the following set of constraint

equations.

f (u = 0) = p0 = a0 + 0.a1 + 02
.a2 + 03

.a3

f ′(u = 0) = 3(p1 − p0) = 0 + 1.a1 + 2.01
.a2 + 3.02

.a3

f (u = 1) = p3 = a0 + 1.a1 + 12
.a2 + 13

.a3

f ′(u = 1) = 3(p3 − p2) = 0 + 1.a1 + 2.11
.a2 + 3.12

.a3

We can rearrange the terms in these equations to get the following set of constraints.

p0 = a0

p1 = a0 +
1

3
a1

p2 = a0 +
2

3
a1 +

1

3
a2

p3 = a0 + a1 + a2 + a3

Therefore, the constraint matrix is:

C =









1 0 0 0

0 1
3

0 0

0 2
3

1
3

0

1 1 1 1









The inverse of C is our basis matrix B. Hence, for natural cubics, the basis matrix is as follows.

Bbezier = C−1
=









1 0 0 0

−3 3 0 0

3 −6 3 0

1 3 −3 1









Since the natural cubic spline is made up of cubic polynomials that follow the same constraints,

the whole spline can be represented in terms of the basis matrix, as we discussed in the previous

section.

Example 2.2

However, unlike the previous cases, the blending Bezier functions BEZk,n(u) are of special

nature. They are known as the Bernstein polynomial and are represented as in Eq. 2.12.

BEZk,n(u) = C(n, k)uk(1 − u)n−k (2.12a)

C(n, k) =
n!

k!(n − k)!
(2.12b)
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From Eq. 2.12, we can derive the blending functions for a cubic Bezier (i.e., n = 3) as

shown in Eq. 2.13.

BEZ0,3(u) = (1 − u)3 (2.13a)

BEZ1,3(u) = 3u(1 − u)2 (2.13b)

BEZ2,3(u) = 3u2(1 − u) (2.13c)

BEZ3,3(u) = u3 (2.13d)

Although the Bezier curves are a nice and elegant way to approximate any given shape,

they do not support local controllability. The B-spline, on the other hand, can support C2

continuity (i.e., very smooth curve) while at the same time has local controllability. The key

to understand this concept is to recollect the notion of representing a polynomial in terms

of other polynomials, as we have seen in the blending function representation of polynomial

pieces (see Eq. 2.9 and associated discussion). The most general form of such representation

is shown in Eq. 2.14.

f (t) =

n
∑

i=1

pibi(t) (2.14)

Equation 2.14 states that the function f can be represented as a linear combination of

blending functions bi’s with the control points pi’s serving as the coefficients. Note the nota-

tional changes from Eq. 2.9. Here, we are using t to denote the parameter instead of u (that

means, the parameter range need not be [0,1]). Let each bi be a polynomial. Clearly, we can

think of f as a spline which is made up of polynomial pieces (bi’s). We can represent each

bi as a combination of other functions, like the overall function f . Then, conceptually each

bi is also a spline (as it is made up of polynomial pieces). We call such splines as B(asis)-

spline. Thus, what we get is a spline curve made up of B-splines. That is the idea of B-spline

(where the name actually indicates the constituent splines). Let us illustrate this in terms of

an example.

Suppose we are given 4 control points. We want to fit a curve through these points. We

have decided to use a linear B-spline (i.e., B-spline pieces made up of linear polynomials).

Each B-spline will have 2 linear pieces as shown in Eq. 2.15 (we shall see later how to

construct them).

bi(t) =











t − i i ≤ t < i + 1

2 − t + i i + 1 ≤ t < i + 2

0 otherwise

(2.15)

Then, our curve function will be of the form shown in Eq. 2.16.

f (t) = p1b1(t) + p2b2(t) + p3b3(t) + p4b4(t) (2.16)

Note that each B-spline is defined between a certain sub-interval of the parameter. More-

over, within this sub-interval, the pieces (constituents of the B-spline) have their own range

within which they are defined. Such points in the parameter range, where a piece starts (or
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ends) are called knot points or simply knots. For the ith B-spline, the knots are i, i + 1, and

i+2. Thus, for 4 control points, i takes the values 1 to 4. Hence, the knots are [1, 2, 3, 4, 5, 6].

This vector of knots, in increasing order of the parameter value, is known as the

knot vector.

From this example, we can see several key characteristics of B-splines. Each B-spline

is made up of k (= d + 1) pieces, where d is the degree of the polynomials. The param-

eter ranges between 1 to n + k with n + k knots. In our example n = 4, k = 2, the

range is between 1 to 6, with 6 knots. The ith B-spline is defined within the knots i and

i + k. Thus, the 2nd (i = 2) B-spline in our example is defined between 2 to 4. Each B-

spline has k + 1 knots (in the example, each B-spline has 3 knots). As we can see, k is

very crucial in determining B-spline characteristics. Hence, it is often called the B-spline

parameter.

2.3.7 Types of B-Splines

Three types of B-splines are used in graphics. When the knots are uniformly spaced in the

knot vector, we have uniform B-spline as in our example. If the spacing between consecutive

knots in the knot vector is not same, we get non-uniform B-splines. A third type is called

NURBS which stands for non-uniform rational B-spline. A NURBS is basically a ratio of

two quantities as shown in Eq. 2.17, where hi’s are scalar weights and bi’s are non-uniform

B-splines. Note that the same B-splines are used in both numerator and denominator.

f (t) =

∑n
i=1 hipibi,k(t)

∑n
i=1 hibi,k(t)

(2.17)

So far, we have discussed the basic idea of B-splines and its characteristics. How can we

determine the B-spline piecewise function for a given k and T (the knot vector)? We can use

the Cox-De Boor recurrence relation, shown in Eq. 2.18 for the purpose.

bi,1,T (t) =

{

1 Ti ≤ t < Ti+1

0 otherwise
(2.18a)

bi,k,T (t) =
t − Ti

Ti+k−1 − Ti
bi,k−1(t) +

Ti+k − t

Ti+k − Ti+1
bi+1,k−1(t) (2.18b)

How can we use Eq. 2.18 to derive the B-splines? Let us illustrate with an example.

We can in fact derive the basis matrix for the uniform linear B-spline from the blend-

ing function representation. The trick is to transform the piecewise functions to parametric

functions where the parameter range is [0, 1], as follows.

bi,2(t) =

{

u u = t − i, i ≤ t < i + 1

−u + 1 u = t − (i + 1), i + 1 ≤ t < i + 2
(2.19)

Next, construct the basis matrix using the following rule. For a B-spline with parameter k,

construct a k × k basis matrix. Let the basis matrix be B = [C1C2 · · ·Cn], where Ci denotes

the ith column vector. Then, Ci contains the coefficients of the ith piecewise function from
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Illustrate the use of the Cox-De Boor recurrence relation.

Solution Let us try to derive the piecewise functions for the uniform linear B-spline (Eq. 2.14).

Note that we have the knot vector T = [1, 2, 3, �], since we are dealing with a uniform spline.

Therefore, Ti = i and also k = 2. Then,

bi,2(t) =
t − i

(i + 1) − i
bi,1(t) +

(i + 2) − t

(i + 2) − (i + 1)
bi+1,1(t)

= (t − i)bi,1(t) + (i + 2 − t)bi+1,1(t)

Each B-spline on the right-hand side of this expression is non-zero only for a particular parameter

range. For instance, bi,1(t) is non-zero only between i and i + 1. So, if i ≤ t < i + 1, only the first

of the B-splines in the expression is non-zero. Hence, we can rewrite the expression as follows.

C =







t − i i ≤ t < i + 1

2 − t + i i + 1 ≤ t < i + 2

0 otherwise

This is the form we have seen in Eq. 2.15. Thus, using Eq. 2.18, we have derived the piecewise

functions of the uniform linear B-spline.

Example 2.3

the bottom in our listing of piecewise functions. Thus, C1 is the coefficient of the last piece,

C2 is the coefficient of the 2nd last piece, and so on. In each column, the coefficients are

arranged as Ci,0 = coefficient of the highest degree term, Ci,1 = coefficient of the next

highest degree term and so on, where Ci,j = the jth element of the ith column. Hence, for

our example, we can set up the basis matrix as,

Blinear_bspline =

[

−1 1

1 0

]

2.3.8 Displaying Spline Curves

In the preceding sections, we have discussed the general idea of splines. Let us come back to

the basic problem: how to fit a spline curve to a given set of control points? The simplest way

to do this is to determine (interpolate) new control points using the spline equation. Then,

we shall join the control points using line segments. The blending function representation

can be used for the purpose.

As an illustration, suppose we are given two control points p0 (1, 2) and p1 (5, 6). We plan

to use a linear interpolating spline to interpolate these points. We can create 3 new control

points by evaluating Eq. 2.9 (the blending function representation) for 3 different values of

the parameter u as shown in Fig. 2.14 (u takes the values 0.25, 0.5, and 0.75). Thus we now

have five points. We can join these points using line segments to fit the curve. Instead of 3,

we could have computed any number of new points. Instead of linear splines, we could have

used any spline in the same way.
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Fig. 2.14 The process of displaying a spline. In the process, new control points are com-

puted using the blending function representation for different values of the parameter. Then,

the points are joined with line segments.

Note that in the simple scheme, we have to evaluate the blending functions again and

again. When we want to display cubic splines at a high rate, such computations may slow the

rendering process. In fact, there are other methods that can reduce computations. We shall

discuss one such method in the following algorithm, known as the De Casteljau algorithm

or the subdivision method, which is used to render Bezier curves.

2.3.9 De Casteljau Algorithm

As we mentioned before, the subdivision method is useful for displaying Bezier curves.

However, we can use this method to draw any spline, with some added computations.

Suppose we are trying to fit a curve f (u) to a given set of four control points P1 =

{p1, p2, p3, p4}. We have decided to use a cubic spline for the purpose. If the basis matrix of

the spline is B1 and the parameter matrix is u, then we can represent f (u) as f (u) = U .B1.P1

(see Eq. 2.7 and associated discussion). Now, the same curve f (u) can be obtained using

another cubic spline with basis matrix B2, albeit with a new set of control points P2 =

{p′1, p′2, p′3, p′4}. Thus, we can say, UB1P1 = UB2P2. From this equation, we can decide the

control point set P2 as in Eq. 2.20.

P2 = B−1
2 B1P1 (2.20)

Using this method, we can convert any spline curve to its equivalent Bezier representation

by finding the new set of control points. For example, if we are given four control points (P1)

and we have used a uniform cubic B-spline (B1) to fit the curve, we can compute the new set

of control points (P2) using the Bezier cubic basis matrix (B2) and Eq. 2.20. On the set P2,

we can apply the subdivision method to compute the points on the curve.

2.3.10 Spline Surfaces

So far we have discussed the process of fitting a spline curve to a set of control points. How

can we construct a surface? This can be done by extending the idea of spline curves. In

order to define a surface, we need to define to a grid of control points. Using this grid, we

can construct individual spline curves, which together shall form the surface, as shown in

Fig. 2.15.
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De Casteljau algorithm (Sub-division method)

Solution The basic idea of the method is as follows:

Input: n control points p1 to pn

Step 1: Join consecutive pairs pi and pj with line segments.

Step 2: Continue till a single point is obtained.

Step 2.1: Divide each line segment in the ratio d:1−d to get n − 1 new points where d is

any real number > 0.

Step 2.2: Join these new points with line segments.

Step 2.3: Go to Step 1.

The following figure shows an example of the method for n = 4 and d =
1
3
. In the figure, the

greyed circles show the points found at each stage of the algorithm. The marked circle in the

rightmost figure is the output point of the algorithm.

Point found after

execution of the

algorithm

P1

P0

P2

P1

P1

P0

P0
P3

P2

Note that in each run of the method, we get one new point. By executing the method m times for

m values of d, we can compute m new points. When these points are joined with line segments, we

get the Bezier curve.

Example 2.4

Control points

Spline surface

Splines

Fig. 2.15 A spline surface made from individual splines
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2.4 SPACE-PARTITIONING REPRESENTATION

Space partitioning methods, as we mentioned before, address the problem of object repre-

sentation through the use of the space (volume) enclosed by the boundaries. The simplest

of all such representations is the voxel. A voxel, simply put, is a 3D equivalent of pixel.

Like pixel grid, we can create a voxel grid to represent a 3D space. The voxels in the grid

are uniform-sized cubes/parallelepipeds. Each voxel carries information such as intensity,

temperature, and so on, such that they uniquely describe a 3D scene.

We can create such a grid using an Octree method. In this method, a 3D region is

provided as input. A recursive procedure is invoked on this input space, to divide it into

eight subregions and the recursion continues till we arrive at a pre-set uniform size of the

subregions (say a unit cube). The recursive procedure creates a tree, each node of which

contains eight children, hence the name octree. The leaf nodes of the tree represent the

3D space. The process is illustrated in Fig. 2.16. Figure 2.17(a) shows the voxel grid cre-

ated using the octree in Fig. 2.17(b). By uniquely associating properties such as color,

density, temperature, and so on, with each voxel, we can represent different objects in a

3D scene.

Binary space partitioning (BSP) is another way of representing space. Similar to the octree

method, this method is also implemented as a recursive procedure. However, unlike the

octree method, here in each step of the recursion, we divide the space into two. The divi-

sion is performed by using planes, which may or may not be parallel to either of the XY, YZ,

or ZX planes (i.e., planes formed by the principle axes). The result of the recursive proce-

dure of the BSP method is the BSP tree, as illustrated in Fig. 2.17, in which the leaf nodes

(a) (b)

Fig. 2.16 A 3D space represented as voxels (a) Voxel grid (b) Octree method
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A (Whole object)

B (Left

sub-region)

C (Right

sub-region)

D (Top

sub-region)

E (Bottom

sub-region)

A

C

D

E

B

(a) (b)

Fig. 2.17 (a) 3D space (b) Represented as BSP tree

U±

− ± − ∗

Fig. 2.18 Illustration of the CSG method—The leaf nodes are the primitive shapes

represent the 3D space. Note that in this example, the division is done using two orthogonal

planes aligned to the XZ and YZ planes. However, this is not a strict requirement and planes

of any orientation can be used for partitioning.

A problem with voxel-based representation is that the memory required to store the voxels

of a voxel-grid is large. This is so since we are dividing the space to uniform-sized voxels

irrespective of the space properties. For example, if a certain region in the space has the same

properties everywhere, we will divide it into voxels nonetheless, although each of these vox-

els will have the same attributes (same color, temperature, density, etc.). We can save storage
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Construction of a BSP tree

Consider the following figure. We want to write a function createBSP() to represent the circle using

a BSP tree.

r

Pm

P2P1

P4 P3

2r

Solution For constructing the tree, we shall take as argument the surrounding region R (the

square in the figure) represented by the four corner points P1, P2, P3, and P4. We partition the

region into four subregions in each call of the function. The partitioning is done using lines

parallel to the axes. The pseudocode of the function createBSP(region) is shown here, assuming

that the circle has radius r.

void createBSP(R)

Add R as an intermediate node in the tree.

Create four new regions R1–R4 by joining the midpoints of the sides of the square.

for(int i = 0; i ≤ 4; i ++)

if size of Ri = unit square (assuming a pixel is represented as a unit square)

if distance between the centers of R and Ri ≤ r

Add Ri as a leaf node to the BSP tree and mark it as ‘inside’

else Add Ri as a leaf node to the BSP tree and mark it as ‘outside’

else

Add Ri as an intermediate node in the tree

createBSP(Ri)

Example 2.5

space if, instead of using many voxels to represent a homogeneous region (i.e., a region in

space with similar attributes), we use a single unit. In other words, we want to divide the

space into non-uniform partitions.

One way to do that is to modify the octree method such that each internal node of the

tree contains 0 or 8 children. In this modified method, we use the recursive procedure as

before. In each step of the recursion, we divide the input space into eight regions based on

the properties of the space. If the attributes of the whole 3D space are same everywhere, we

do not divide it. The BSP method can also be adopted in a similar way. Thus, in the modified
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BSP method, we shall either divide a region into two subregions or not (i.e., each node of

the BSP tree shall have 0 or 2 children).

While octree or BSP methods are based on division of space, the constructive solid

geometry (CSG) method relies on joining of spaces to represent objects. In this method,

a set of primitive shapes are used. A set of Boolean operators (union, intersection,

difference, etc.) are defined over the set of primitive shapes. The operators can be

applied hierarchically over a number of shapes to represent complex objects, as illustrated

in Fig. 2.18.

2.5 OTHER REPRESENTATIONS

The techniques we have discussed so far are useful to approximate objects of different shapes

and sizes. However, for complex shapes, we can use more advanced techniques.

Fractal Representation

Consider the shape of Fig. 2.19(a). While we can use any of the earlier techniques to repre-

sent the shape, more realistic rendering can be done if we use fractal representation. This is

so due to the special properties of the shape: namely infinite details at every point and cer-

tain self-similarity between object parts and overall features of the object. Other examples

of such shapes include mountains, clouds, corals, and snowflakes, for which fractal repre-

sentation is suitable. Appendix B contains a more detailed discussion on the idea of fractals

and its use in computer graphics.

Particle System Representation

The fractal method is a procedural representation technique in which an object is repre-

sented as a procedure (i.e., a set of rules). Particle systems provide another representation

technique, as illustrated in Fig. 2.19(b). In this technique, objects are represented as a set of

(a) (b)

Fig. 2.19 Advanced modeling techniques (a) Fern leaf,an example of fractal representation,

a procedural method (b) Waterfall can be modeled using particle system
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(a) (b)

Fig. 2.20 (a) A skeleton model (b) Subsequent rendering of animate figure (kitten)

particles, which move over time with some specified properties. The method is suitable to

model phenomena such as waterfall, smoke, hair, cloth, and the like.

Skeletal Model Representation

A widely used representation technique in computer animation is the skeleton model. Con-

trary to what the name suggests, the technique can be used for representing vertebrate

(human and non-human), invertebrate as well as inanimate objects. In this model, an object is

represented as a hierarchy of ‘bones’ that forms the ‘inner layer’. To these bones is attached

the ‘skin’ (outer layer). When some operation is applied on some node in the bone hierarchy,

rules are provided to decide the change in the overall bone structure as well as the skin. An

example of the use of the skeleton model is shown in Fig. 2.20.

Scene Graph Representation

While the techniques discussed so far are primarily used to represent individual objects, the

scene graph is used to represent the whole scene itself. A scene graph is basically a graph-

like data structure, with individual objects serving as the nodes. The objects in the scene

can be represented using any technique we have discussed so far. The scene graph structure

can be used to specify the spatial and temporal properties of those objects in relation to the

overall scene as well as to each other.

2.6 ISSUES IN MODEL SELECTION

It should be apparent from the preceding discussions that there is a rich variety of tech-

niques used to represent objects/scenes in computer graphics. An obvious question is, which

technique to use and when? The answer depends on many factors. While we always want to

represent things in the most realistic way, use of advanced techniques such as particle sys-

tems is not always possible. This is so since each technique comes with a cost. The cost may

be computational or storage requirements or both. Depending on the resources available,

we have to make the decision. For example, although it is desirable to represent coastlines

(of a sea in a scene) with fractals, if we are considering a mobile platform with limited
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storage, limited capacity processor, and limited battery life, we may have to use some sim-

pler methods than fractals. Of course, we lose something (the realism) but gain something

(a working approximation).

Sometimes, we also consider the ease of manipulation. This is particularly important in

animations where scenes change rapidly. If it requires a lot of time to manipulate (e.g.,

rotation, translation, scaling, clipping, projection, hidden surface removal, etc.) objects rep-

resented in a particular way, the quality of animation will be reduced. Hence, we should look

for other simpler types in such cases.

Ease of acquiring data (e.g., how many data items we need to supply/provide for the

representation) can be another important concern. For example, if we are using vertex list

representation to represent a curved surface approximated using a mesh, we may need to

provide a large number of vertices. Instead, using fewer control points, we can approximate

the same surface with splines.

Thus, there will always be some trade-offs to manage. We have to take the decision (about

choosing a particular representation technique) depending on the resources at hand (the com-

puting platform), the nature of interaction (are we comfortable with supplying large amount

of data or we don’t want to compromise on that), and the effect we are satisfied with (are we

looking for perfect photo-realism or will a good approximation be acceptable).

SUMMARY

What we have learnt in this chapter? The first thing is, in order to model various objects and

phenomena in a synthesized scene, we can resort to a rich variety of techniques. While point-

sample rendering and sweep representations have their use,more widely used are the boundary

representation techniques and the space partitioning methods. The boundary representation

techniques include mesh representation, implicit modeling, and parametric representations.

The spline representation, which is a type of parametric representation technique, is widely

used in computer graphics to represent complex and irregular shapes. Both interpolating (nat-

ural cubics, Hermite cubics, and Cardinal cubics) and approximating (Bezier and B-splines) are

used, each with their own advantages and disadvantages.

In space partitioning methods, uniform (voxels) and non-uniform space partitioning using

the BSP trees or octrees are used. CSG is another space partitioning method for object

representation, which works by applying Boolean operators on a set of primitive shapes.

Although the aforementioned methods can be used to approximate anything, we can make

use of advanced techniques such as fractal geometry methods or particle systems to represent

complex shapes more realistically. Moreover, scene graphs provide a mechanism to represent

whole scenes in a systematic manner. On the other hand, the skeleton models are good to

manipulate and hence are primarily used in computer animations where the scene changes

rapidly.

Finally,we have briefly discussed the factors involved in addressing the trade-offs in choosing

a representation scheme. The factors include the available resources (computational and stor-

age), the desired accuracy and realism (what we get and if that is sufficient for the purpose), as

well as the ease of manipulation (how easily we can manipulate the representations to perform

various tasks such as transformations, clipping etc.).

Object representation is the first and the most basic stage of a graphics pipeline. On the

objects thus defined, we perform several operations before these are rendered, as we have

discussed in Chapter 1 (the pipeline). In the next chapter, we discuss the geometric modeling,
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which is the next stage in our pipeline. This stage can be construed as the process of assem-

bling different objects defined in their own co-ordinate systems (using any of the representation

techniques discussed in this chapter) into a whole scene.

A large number of object representation techniques are used in computer graphics. We have

discused a few of those at an introductory level.More techniques at such introductory level can

be found in Hearn and Baker [2004] and Foley et al. [1995]. There are many good sources for

in-depth understanding of the techniques. In fact,some of the broad techniques are full fields of

study in itself with a large body of literature.A useful source of information on parametric curves

and surfaces is Rogers and Adams [1990]. Detailed discussion on splines and their application

to computer graphics can be found in Mortenson [1985] and Bartels et al. [1987]. A standard

reference for a more mathematical discussion on splines is De Boor [2001]. Algorithms for

quadtree and octree applications are given in Yamaguchi et al. [1984] and Brunet and Navazo

[1990]. BSP-tree methods are presented in Gordon and Chen [1991]. Solid-modeling meth-

ods are discussed in Requicha and Rossignac [1992]. Mandelbrot [1977] is a good source on

fractals. Reeves [1983] contains information on particle systems. Physically-based modeling

methods are presented in Barzel [1992].

BIBLIOGRAPHIC NOTE

KEY TERMS

Approximating spline – the spline curve that passes close to the control points

Basis matrix – the inverse of a constraint matrix

Basis/blending functions – Another way of representing splines

Bazier curves – a type of approximating splines

Bernstein polynomials – the set of blending functions for a Bezier curve

Binary space partitioning (BSP) method – a space partition method that uses BSP data

structure for object representation

Blobby objects – objects that are fluidic in nature such as a water droplet

Boundary representation – representing an object in terms of its boundary

Cardinal cubic splines – a type of interpolating splines

Constraint matrix – a matrix representation of constraints on the control points

Constructive solid geometry (CSG) – a space partitioning method that uses a set of basic

objects and Boolean operators to represent arbitrary objects

Continuity condition – ensures that there is continuity at the joining points in joining more than

one polynomial pieces in a spline

Control points – a set of points that define a spline

Cox-De Boor recurrence relation – recurrence relation to derive the basis functions for B-splines

Cubic B-splines – a type of approximating splines

De Casteljau algorithm – a sub-division method to display Bezier curves

Fractal method – a procedural technique for object representation

Geometric continuity – a set of conditions that ensures geometric smoothness of spline curves

Hermite cubic spline – a type of interpolating splines

Implicit representation – object representation techniques that use some parameters in the

Eucledian space

Interpolating spline – the spline curve that passes through all its control points

Interpolation – the process of fitting a curve to a given set of points
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Knot points/knots – points that mark the beginning or end of constituent polynomials of a B-spline

Knot vector – a vector representing all the knots

Local controllability – the ability to change a small portion of a curve shape by changing only a

subset of the control points around that portion

Mesh representation – representation of an object in terms of a polygonal mesh

Metaball model – a type of blobby object representation technique

Natural cubic spline – a type of interpolating splines

Non-uniform B-splines – when the knot spacings are not the same

NURBS – a special type of non-uniform B-splines

Octree method – a space-partition method that uses octree data structure to represent objects

Parametric continuity – a set of conditions that ensures continuity of spline curves

Parametric representation – object representation techniques that use implicit functions

Particle system – a procedural technique for object representation

Point sample – a set of raw data points

Point-sample rendering – representing objects in terms of a set of raw data points

Quadric surfaces – surfaces that can be represented with quadratic equations

Scene graphs – hierarchical scene representation technique

Skeleton model – a popular technique used to represent objects in computer animation

Space partitioning – the technique to represent an object in terms of the space it occupies

Space-partitioning tree – a tree data structure used to represent the space occupied by an object

Spline – a mathematical abstraction, taken from the field of ship building,used to represent curves

as a set of polynomial pieces joined together

Surface of revolution – One type of sweep representation technique

Sweep representation – a technique to represent an object in terms of a basic shape and its

motion path

Sweep surface – one type of sweep representation technique

Uniform B-spline – when the knot spacings are same

Vertex/Edge list – special data structure used in mesh representation

EXERCISES

2.1 Find out at least two examples for each of the object representation techniques shown in

Fig. 2.3, excluding those mentioned in this chapter.

2.2 Suppose you are designing a painting system, where the user can paint shapes in an

interactive way using either of the following methods.

(a) Draw the shape by selecting from a library of pre-defined shapes.

(b) Draw the shape using a free-form curve shape (i.e., a curve that can be made to take

any shape).

What representation method you should use to design the system? Discuss.

2.3 Consider the object shown in Fig. 2.2(b). Write an algorithm (in pseudocode) to represent

the object.

2.4 Explain the concept of splines. Why are they useful?

2.5 What is the difference between interpolating and approximating splines? Discuss their

merits and demerits.

2.6 Consider the control points (1,1), (6,3), (9,5), and (12,2). Perform the following.

(a) Determine three new control points using natural cubic, hermite cubic, and cardinal

cubic splines.

(b) Determine three new control points using the subdivision method for cubic Bezier

curves.
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(c) Determine three new control points for fitting a uniform cubic B-spline using the

subdivision method.

2.7 Determine the basis matrix for the uniform quadratic B-spline using the Cox-DeBoor

relation.

2.8 Write an algorithm (in pseudocode) to represent a sphere using voxels.

2.9 Consider the BSP tree construction algorithm in Section 2.4. In the algorithm, we divide the

space till the level of unit squares. Adapt this method such that the division occurs only

when a region contains the object. Assuming r = 4, calculate the saving in space if the

adapted method is used. Does it saves time also?

2.10 Consider Fig. 2.21. It shows an object made from two parallelepipeds including one with

a circular hole in its middle. Determine the primitive shapes and operations required to

construct this object using CSG method. Show the CSG tree.

Fig. 2.21 Composite object of Exercise 2.10

2.11 What are the factors you should consider to decide about a particular representation

method? Discuss.

2.12 Although we discussed many representation techniques, we also mentioned that all are

first converted to mesh representation before rendering. Why do you think this is so?
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CHAPTER

3 Modeling

Transformations

Learning Objectives

After going through this chapter, the students will be able to

• Get an idea of modeling transformations

• Learn about the four basic modeling transformations—translation,rotation,shearing,and

scaling—in both two and three dimensions

• Understand the homogeneous coordinate system used for representing modeling trans-

formations

• Have a basic understanding of the matrix representations of modeling transformations

• Learn and derive composite transformations from the basic transformations through

matrix multiplications, both in two and three dimensions

INTRODUCTION

We have come across different methods and techniques to represent objects in Chapter 2.

These techniques, however, allow us to represent objects individually, in what is called

local/object coordinates. In order to compose a scene, the objects need to be assembled

together in the so called scene/world coordinate system. That means, at the time of defin-

ing the objects, the shape, size, and position of the object is not important. However, when

individual objects are assembled in a scene, these factors become very important. Conse-

quently, we have to perform operations to transform objects (from its local coordinate to

the scene/world coordinate). The stage of the graphics pipeline in which this transformation

takes place is known as the modeling transformation. Figure 3.1 illustrates the idea.

Thus, modeling transformation effectively implies applying some operations on the object

definition (in local coordinate) to transform them as a component of the world coordinate

scene. There are several such operations possible. However, all these operations can be

derived from the following basic operations (the letter in the parenthesis beside each name

shows the common notation for the transformations).

Translation (T) Translates the object from one position to another position

Rotation (R) Rotates the object by some angle in either the clockwise or anticlockwise

direction around an axis
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(a) (b)

Y

X

Z

Y

X

Z

Y

X

Z

Fig. 3.1 In (a), two objects are defined in their local coordinates. In (b), these objects are

assembled (in world scene coordinate) to compose a complex scene.

Note: In a scene,objects are used multiple times,at different places,and in different sizes.The oper-

ations required to transform objects from their local coordinate to world coordinate are collectively

called modeling transformations.

Scaling (S) Reduces/Increases the size of the object

Shearing (Sh) Changes shape of the object (although, strictly speaking, this is not a basic

transformation as it can be derived from a composition of rotation and scaling, we shall treat

it as basic in this book)

As you can see, these operations change the geometric properties (shape, size, and

location) of the objects. Hence, these are also called geometric transformations.

We shall adopt a different approach in describing the transformations. Although our main

focus is 3D graphics pipeline, we start with the description of 2D transformations and then

show how these are applied in 3D. This is done for simplicity and we shall take this approach

in the later chapters also. In this chapter, we shall learn about the four basic modeling trans-

formations, their representation, and the composition of these basic transformations to derive

new transformations.

3.1 BASIC TRANSFORMATIONS

Among the four basic transformations, translation is the simplest. In order to translate a point

p(x, y) to a new location p′(x′, y), we displace the point by an amount tx and ty along the X

and Y directions, respectively, as shown in Fig. 3.2. If the displacement is along the positive

X-axis, it is positive displacement, otherwise the displacement is negative. The same is true

for vertical displacements.

It is clear from the figure that the new point can be obtained by simply adding the dis-

placements to the corresponding coordinate values. Thus, we have the relationships shown

in Eq. 3.1 between the old and new coordinates of the point for translation.

x′ = x + tx (3.1a)

y′ = y + ty (3.1b)

Unlike translation where linear displacement takes place, rotation involves angular dis-

placement. In other words, the point moves from one position to another on a circular track

about some axis. For simplicity, let us assume that we want to rotate a point around the

Z-axis counterclockwise by an angle φ. The scenario is shown in Fig. 3.3.
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Y

x

x′

y′

p′(x′, y′)

p(x, y)

X

y

ty

tx

Fig. 3.2 Illustration of the translation operation

As the figure shows, the new coordinates can be expressed in terms of the old coordinates

as in Eq. 3.2, where r is the radius of the circular trajectory.

x = r cos θ, y = rsinθ (3.2a)

x′ = r cos (θ + φ) = r cos θ cos φ − r sin θ sin φ = x cos φ − y sin φ (3.2b)

y′ = r sin (θ + φ) = r sin θ sin φ + r cos θ cos φ = x sin φ + y cos φ (3.2c)

By convention, counterclockwise angular movements are taken as positive, as in the

aforementioned derivation, whereas clockwise movement is taken as negative. Thus, in

case of clockwise movement, the displacement angle (φ) in Eq. 3.2 should be replaced

with (−φ).

In both the transformations (translation and rotation), we have shown the transformations

applied on a point. For an object, we shall simply apply the operation on the points that

make up the surfaces of the object (e.g., apply operation on all the points on the vertex list

for a regular object or on the control points for an object defined with spline surfaces, etc.).

Note that, in this way we can change the orientation of an object by applying rotation on the

surface points.

With translation and rotation, we can change the position and orientation of objects.

Scaling allows us to change (increase or decrease) the object size. Mathematically, scal-

ing a point is defined as multiplying its coordinates by some scalers, called the scal-

ing factors. Thus, given a point p(x, y), we can scale it by a factor sx along X-axis

(direction) and sy along Y-axis (direction) to get the new point p′(x′, y′), as shown

in Eq. 3.3.

x′ = sxx (3.3a)

y′ = syy (3.3b)

Y

X

r

q

f

x′

x, y

Fig. 3.3 The counterclockwise rotation operation about Z-axis by an angle φ
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When the scaling factor is same along both the X and Y directions, the scaling is called

uniform. Otherwise, it is differential scaling. Thus, in order to scale up/down any object,

we need to apply Eq. 3.3 on its surface points, with scaling factor greater/less than one, as

illustrated in Fig. 3.4. Note in the figure that the application of scaling repositions the object

also (see the change in position of vertices in the figure).

We have so far seen transformations that can change the position and size of an object.

With shearing transformation, we can change the shape of an object. The general form

of the transformation to determine the new point (x′, y′) from the current point (x, y) is

shown in Eq. 3.4, where shx and shy are the shearing factors along the X and Y directions,

respectively.

x′ = x + shxy (3.4a)

y′ = y + shyx (3.4b)

Similar to the scaling operation, we can apply Eq. 3.4 to all the surface points of the object

to shear it, as illustrated in Fig. 3.5. Note in the figure that shearing may also reposition the

object like scaling (see the change in position of vertices in the figure).

Y Y

X X

4

2

3 31

1

2

9

sx = 1/2

sy = 1/3

(a) (b)

Fig. 3.4 Illustration of the scaling operation. Figure 3.4(a) is shrunk to the shape shown in

Fig. 3.4(b). Note that the new vertices are obtained by applying Eq. 3.3 on the vertices of the

object.

shx = 1/2

shy = 0

YY

X X

4

2

4

2

3 9 3 9

(a) (b)

Fig. 3.5 The shearing of the object along horizontal direction (characterized by a positive

shear factor along X-direction and a shear factor of 0 along the Y-direction). Figure 3.5(a) is

distorted to the shape shown in Fig.3.5(b).The new vertices are obtained by applying Eq.3.4

on the vertices of the object.
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3.2 MATRIX REPRESENTATION AND HOMOGENEOUS COORDINATE SYSTEM

The equation form of the transformations in Table 3.1 is not very useful in developing graph-

ics packages/libraries in a modular way. Instead, an alternative equivalent representation is

used, in which each of these transformations is represented as a matrix. For example, scaling

can be represented in matrix form as S =

[

sx 0

0 sy

]

. Given a point P(x, y), we can represent

it as a (column) vector P =

[

x

y

]

. Then, the new vertices of a scaled object can be obtained

by multiplying the matrices together (i.e., P′
= S.P). A similar approach can be adopted for

rotation and shearing also.

However, if we choose to adopt 2 × 2 matrices for representing transformations, problem

occurs for translation. We cannot represent translation with a 2×2 matrix. In order to address

this issue, we take recourse to one mathematical trick known as the homogeneous coordinate

system. A homogeneous coordinate system is an abstract representation technique in which

we represent a 2D point P(x, y) with a 3-element vector Ph(xh, yh, h), with the relationship

x =
xh
h
, y =

yh

h
. The term h is the homogenous factor and can take any non-zero value.

Table 3.1 Four basic types of geometric transformations along with their characteristics

Transformations [Notation] General form Remarks

Translation x′ = x + tx

[T(tx, ty )] y′
= y + ty

Rotation

[R(φ)]

x′ = x cos φ − y sin φ

y′
= x sin φ + y cos φ

• φ = angle of rotation

• Clockwise rotation → negative

angle (replace φ with −φ)

• Anticlockwise rotation → posi-

tive angle

Scaling

[S(sx, sy )]

x′ = sxx

y′
= syy

• sx, sy : Scaling factors along

the X and Y axes, respectively,

can take any real value (=1 if

no scaling)

• Scaling factor > 1, size

increases

• Scaling factor < 1, size

decreases

• Along with size, position may

change

Shear

[Sh = (shx, shy )]

x′ = x + shxy

y′
= y + shyx

• shx, shy : Shearing factors

along the X and Y axes,

respectively, can take any real

value (= 0 if no scaling).

• Along with shape,position may

change.
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Homogeneous coordinate system

A convenient way to represent transformations in

matrix form. It is an abstract 3D representation of

2D points (in general, n-D point represented by

n + 1 vector).

P =

[

x

y

]

→ Ph





xh
yh
h





The homogeneous factor h can take any

non-zero value. To get back the original coor-

dinates, perform the following operations: x =

xh

h
, y =

yh

h
.

The point (xh, yh, 0) is assumed to be at infinity

and the point (0, 0, 0).

Any point of the form (xh, yh, 0) is assumed to be at infinity and the point (0, 0, 0) is not

allowed in this coordinate system.

When we represent geometric transformations in homogeneous coordinate system, our

earlier 2 × 2 matrices will transform to 3 × 3 matrices (in general, any N × N transforma-

tion matrix is converted to N + 1 × N + 1 matrix). Also, for geometric transformations, we

consider h = 1 (in later chapters, we shall see other transformations with h 6= 1). With these

changes, the matrices for the four basic transformations are given in Table 3.2.

Table 3.2 Matrix representation (in homogeneous coordi-

nates) of the four basic geometric transformations

Transformations Homogeneous matrix form

Translation [T(tx, ty )]











1 0 tx

0 1 ty

0 0 1











Rotation [R(φ)]











cos φ − sin φ 0

sin φ cos φ 0

0 0 1











Scaling [S(sx, sy )]











sx 0 0

0 sy 0

0 0 1











Shear [Sh(shx, shy )]











1 shx 0

shy 1 0

0 0 1











3.3 COMPOSITION OF TRANSFORMATIONS

Consider Fig. 3.6. The Figure 3.6(a) shows an object (the rectangle ABCD with length

2 units and height 1 unit) in its local coordinate. This object is used to define the chimney of

the house in Fig. 3.6(b) (in world coordinate scene).
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2

1

1

1

A

B
C

D

5

C′ B′

D′

A′

5

(a) (b)

Fig. 3.6 Example of composite transformation. The object of the Fig. 3.6(a) is transformed

to the object in Fig. 3.6(b), after application of a series of transformations

Clearly, the transformation of the object ABCD (in local coordinate) to A′B′C′D′ (in

world coordinate) is not possible with a single basic transformation. In fact, we need two

transformations: scaling and translation.

How we can calculate the new object vertices? We shall follow the procedure as before,

namely multiply the current vertices with the transformation matrix. Only, here we have a

transformation matrix that is the composition of two matrices, namely the scaling matrix and

the translation matrix. The composite matrix is obtained by multiplying the two matrices in

sequence, as shown in the following steps.

Step 1: Determine the basic matrices

Note that the object is halved in length while the height remains the same. Thus,

the scaling matrix is, S =





0.5 0 0

0 1 0

0 0 1



. The current vertex D(0, 0) has now posi-

tioned at D′(5, 5). Thus, there are 5 unit displacements along both horizontal and

vertical directions. Therefore, the translation matrix is, T =





1 0 5

0 1 5

0 0 1



.

Step 2: Obtain the composite matrix

The composite matrix is obtained by multiplying the basic matrices in sequence.

We follow the right-to-left rule in forming the multiplication sequence. The

first transformation applied on the object is the rightmost in the sequence. The

next transformation is placed on the left and we continue in this way till the

last transformation. Thus, our composite matrix for the example is obtained as

follows.

M = T .S =





1 0 5

0 1 5

0 0 1









0.5 0 0

0 1 0

0 0 1



 =





0.5 0 5

0 1 5

0 0 1





Step 3: Obtain new coordinate positions

Next, multiply the surface points with the composite matrix as before, to obtain

the new surface points. In this case, we simply multiply the current vertices with the

composite matrix to obtain the new vertices.
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A′
= MA =





0.5 0 5

0 1 5

0 0 1









2

0

1



 =





6

5

1





B′
= MB =





0.5 0 5

0 1 5

0 0 1









2

1

1



 =





6

6

1





C′
= MC =





0.5 0 5

0 1 5

0 0 1









0

1

1



 =





5

6

1





D′
= MD =





0.5 0 5

0 1 5

0 0 1









0

0

1



 =





5

5

1





Note that the results obtained are in homogeneous coordinates. In order to obtain the

Cartesian coordinates, we divide the homogeneous coordinate values with the homogeneous

factor, which is 1 for geometric transformations. Thus, the Cartesian coordinates of the final

vertices are as follows:

A′
= (6/1, 5/1) = (6, 5),

B′
= (6/1, 6/1) = (6, 6),

C′
= (5/1, 6/1) = (5, 6), and

D′
= (5/1, 5/1) = (5, 5)

In composite transformations, we multiply basic matrices. We know that matrix multi-

plication is not commutative. Therefore, the sequence is very important. If we form the

sequence wrongly, then we will not get the correct result. In the previous example, if we

form the composite matrix M as M = S.T , then we will get the wrong vertices (do the

calculations and check for yourself).

How have we decided in the previous example, the sequence, namely first scaling and

then translation? Remember that in scaling, the position changes. Therefore, if we translate

first to the final position and then scale, the vertex positions would have changed. In stead, if

we first scale with respect to the fixed point D (the origin) and then translate the object (by

applying the same displacement to all the vertices), then the problem of repositioning of the

vertices will not occur. That is precisely what we did.

The example before is a special case where the fixed point was the origin itself. In general,

the fixed point can be anywhere in the coordinate space. In such cases, we shall apply the

aforementioned approach with slight modification.

Suppose we want to scale with respect to the fixed point F(x, y). In order to determine the

composite matrix, we assume the following sequence of steps.

1. The fixed point is translated to origin (−x and −y units of displacements in the horizontal

and vertical directions, respectively).

2. Scaling is performed with respect to origin.

3. The fixed point is translated back to its original place.
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1

1

1
55

5

2

C′ B′

D′

A′A

B

D

C

5

(a) (b)

Fig. 3.7 Example of scaling with respect to an arbitrary fixed point (a) Object definition

(b) Object position in world coordinate

Thus, the composite matrix M = T(tx = x, ty = y).S(sx, sy).T(tx = −x, ty = −y). Figure

3.7 illustrates the concept. This is a modification of Fig. 3.6. In this, the object is now defined

(Fig. 3.7(a)) with the vertices A(7, 5), B(7, 6), C(5, 6), and D(5, 5). Its world coordinate posi-

tion is shown in Fig. 3.7(b). Note that the scaling is done keeping D(5, 5) fixed. Hence, the

composite matrix M = T(tx = 5, ty = 5)S(sx = 0.5, sy = 1)T(tx = −5, ty = −5).

A similar situation arises in the case of rotation and shearing. In rotation, so far we

assumed that the object is rotated around the Z-axis. In other words, we assumed rotation

with respect to the origin through which the Z-axis passes. Similar to scaling, we can derive

the rotation matrix with respect to any fixed point in the XY coordinate space through which

the rotation axis (parallel to the Z-axis) passes. We first translate the fixed point to origin

(aligning the axis of rotation with the Z-axis), rotate the object, and then translate the point

back to its original place. Thus, the composite matrix is M = T(tx = x, ty = y).R(φ).T(tx =

−x, ty = −y), where (x, y) is the fixed point coordinate. Composite matrix for shearing

with respect to any arbitrary (other than origin) fixed point is derived in a similar way:

M = T(tx = x, ty = y).Sh(shx, shy).T(tx = −x, ty = −y).

What happens when more than one basic transformation is applied to an object with

respect to any arbitrary fixed point? We apply the same process to obtain the compos-

ite transformation matrix. We first translate the fixed point to origin, perform the basic

Rotation, scaling, and shearing with respect to any arbitrary fixed point (other than origin)

The transformation matrix is obtained as a composition of basic transformations. All follow the same

procedure.

1. Translate the fixed point to origin.

2. Perform the transformation (rotation/scaling/shearing).

3. Translate the fixed point back to its original place.

The transformation matrix at the fixed point (x, y) is

M =







T(tx = x, ty = y).R(φ).T(tx = −x, ty = −y) Rotation

T(tx = x, ty = y).S(sx, sy ).T(tx = −x, ty = −y) Scaling

T(tx = x, ty = y).Sh(shx, shy ).T(tx = −x, ty = −y) Shearing
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1

1

1
55

5

2

A′

A

5

Fig. 3.8 Example of composite transformations with respect to an arbitrary fixed point (5,5).

The object in Fig. 3.8(a) is transformed in Fig. 3.8(b). Note that two basic transformations are

involved: scaling and rotation.

transformations in sequence, and then translate the fixed point back to its original place.

An example is shown in Fig. 3.8.

Figure 3.8(a) shows the object (cylinder) with length 2 units and diameter 1 unit, defined

in its own (local) coordinate. The cylinder is placed on the roof of the house in Fig. 3.8(b)

(world coordinate), after scaling it horizontally by half and rotating it 90◦ anticlockwise with

respect to the fixed point (5,5). How to compute the new (world coordinate) position of the

object? We apply the approach outlined before.

Step 1: Obtain the composite matrix.

(a) Translate the fixed point (5,5) to origin.

(b) Scale by 1/2 in X-direction.

(c) Rotate anticlockwise by 90◦.

(d) Translate the fixed point back to (5,5).

Composite matrix M =

T(tx = 5, ty = 5)R(90◦)S(sx = 0.5, sy = 1)T(t − x = −5, ty = −5)

=





1 0 5

0 1 5

0 0 1









0 −1 0

1 0 0

0 0 1









0.5 0 0

0 1 0

0 0 1









1 0 −5

0 1 −5

0 0 1



 =





0 −10 10

0.5 0 2.5

0 0 1





Step 2: Multiply surface point (column vectors) with composite matrix to obtain new

position (left as an exercise).

3.4 TRANSFORMATIONS IN 3D

Three-dimensional transformations are similar to 2D transformations, with some minor

differences.

1. We now have 4× 4 transformation matrices (in homogeneous coordinate system) instead

of 3 × 3. However, the homogeneous factor remains the same (h = 1).

2. In 2D, all rotations are defined about Z-axis (or an axis parallel to it). However, in 3D, we

have three basic rotations, with respect to each of the principle axes X, Y, and Z. Also,
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the transformation matrix for rotation about any arbitrary axis (any axis of rotation other

than the principle axes) is more complicated than in 2D.

3. The general form of the shearing matrix is more complicated than in 2D.

In shearing, we can now define distortion along one or two directions keeping one direc-

tion fixed. For example, we can shear along X and Y directions, keeping Z direction fixed.

Therefore, the general form looks different from the one in 2D.

3.4.1 3D Shearing Transformation Matrix

In the general form, there are six shearing factors, each can take any real value or zero (if

no shear along that particular direction). The factors shxy and shxz are used to shear along

Y and Z directions, respectively, leaving the x coordinate value unchanged. Similarly, shyx

and shyz are used to shear along X and Z directions, respectively, leaving the y coordinate

value unchanged; The factors shzx and shzy are used to shear along X and Y directions,

respectively, leaving the z coordinate value unchanged.

Shearing[shxy, shxz, shyx, shyz, shzx, shzy] =









1 shxy shxz 0

shyx 1 shyz 0

shzx shzy 1 0

0 0 0 1









The transformation matrices for translation, rotation, and scaling in 3D are shown in

Table 3.3, which are similar to their 2D counterparts, except that there are three rotation

matrices in 3D.

The composite matrix for scaling and shearing with respect to any arbitrary fixed point is

determined in a similar way as in 2D, namely translate the fixed point to origin, perform the

operation and then translate the point back to its original place. Rotation about any arbitrary

axis, however, is more complicated as discussed next.

Table 3.3 The matrix representation (in homogeneous coor-

dinates) of the three basic geometric transformations in 3D

Transformations Homogeneous matrix form

Translation [T(tx, ty , tz)]

















1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

















Rotation about X-axis [RX (φ)]

















1 0 0 0

0 cos φ − sin φ 0

0 sin φ cos φ 0

0 0 0 1

















(Contd)
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Table 3.3 (Contd)

Transformations Homogeneous matrix form

Rotation about Y-axis [RY (φ)]

















cos φ 0 sin φ 0

0 1 0 0

− sin φ 0 cos φ 0

0 0 0 1

















Rotation about Z-axis [RZ(φ)]

















cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 1 0

0 0 0 1

















Scaling [S(sx, sy , sz)]

















sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

















3.4.2 3D Rotation About Any Arbitrary Axis

The schematic of 3D rotation about any arbitrary axis is shown in Fig. 3.9, where we want to

rotate an object by an angle θ counterclockwise around an axis of rotation passing through

the two points P1 and P2.

As shown in Fig. 3.9, the transformation matrix is a composition of five transformations.

1. Translation to origin (T[−x,−y,−z]: (x, y, z) is the coordinate of P2).

2. Alignment of the axis of rotation with the Z-axis (it can be X- or Y-axis also).

(a) Rotation about X-axis, to put the axis of rotation on the XZ plane [RX (α): α is the

angle of rotation about X-axis].

(b) Rotation about Y-axis, to align the axis of rotation with Z-axis [RY (β): β is the angle

of rotation about Y-axis].

3. Rotation of the object about Z-axis [RZ(θ): theta is the angle of rotation of the object

about the axis of rotation].

4. Reverse rotation about Y− and X-axes to bring the axis of rotation back to its original

orientation.

5. Translation of the axis of rotation back to its original position.

Therefore, the composite transformation matrix is,

M = T−1R−1
X (α)R−1

Y (β)RZ(θ)RY (β)RX (α)T

Note that the inverse rotations essentially change the sign of the angle. For example, if

α is defined counterclockwise, then the inverse rotation will be clockwise. In other words,

R−1
X (α) = RX (−α).
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Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

P1 P1

P1″

P1″

P2

P2 P2

P2 P2′

P1′
P1

P2

Initial position Step 1: Translate

the line to

origin

Step 2: Align the line

with Z-axis (rotate

about X- and Y-axis)

Step 3: Rotate the

object (about Z-axis)

Step 4: Rotate the

line to its original

orientation

Step 5: Translate

the line back to its

original positions

Fig. 3.9 Schematic of rotation about any arbitrary axis in 3D

An object ABCD is defined in its own coordinate as A(1, 1, 0), B(3, 1, 0), C(3, 3, 0), and D(1, 3, 0).

The object is required to construct a partition wall A′B′C′D′ in a world-coordinate scene (A′ cor-

responds to A and so on). The new vertices are A′(0, 0, 0), B′(0, 4, 0), C′(0, 4, 4), and D′(0, 0, 4).

Calculate the composite transformation matrix to perform the task.

Solution1 The situation is depicted in Fig. 3.10.

Y

Y

Z
Z

A

A′

B

B′

D

D′

C

C′

Initial position Final position

Fig. 3.10 The initial and final positions of the object

Initially the square is in the XY plane with each side equal to 2 units and center at (2, 2, 0). The final

square is on the YZ plane with side equal to 4 units and the center at (0, 2, 2). The transformations

required are as follows:

1It can be done in multiple ways. The solution presented here is one of those.

Example 3.1
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1. Translate center to origin → T(−2,−2, 0).

2. Rotate by 90◦ anticlockwise around z-axis → RZ(90◦).

3. Rotate by 90◦ anticlockwise around y-axis → RY (90◦).

4. Scale by 2 in Y and Z direction → S(1, 2, 2).

5. Translate center to (0, 2, 2) → T(0, 2, 2).

The composite matrix M = T(0, 2, 2)S(1, 2, 2)RY (90◦)RZ(90◦)T(−2,−2, 0).

Consider a circular track (assume negligible width, radius = 4 units, centered at origin). The track

is placed on the XZ plane. A sphere (of unit radius) is initially resting on the track with center on

the +Z axis, with a black spot on it at (0, 0, 6). When pushed, the sphere rotates around its own

axis (parallel to Y axis) at a speed of 1◦/min as well as along the track (complete rotation around

the track requires 6 hrs). Assume all rotations are anticlockwise. Suppose an observer is present at

(3, 0, 7). Will the black spot be visible to the observer after the sphere rotates and slides down for

an hour and half?

Solution The situation is illustrated in Fig. 3.11.

Z

2

4

X

Y

ObserverBlack spot

Initial position

Fig. 3.11 Initial configuration

In the problem, we are required to determine the position of the black spot after one and half hours.

We need to determine the transformation matrix M , which, when multiplied to the initial position

of the black spot, gives its transformed location. Clearly, M is a composition of two rotations, one

for rotation of the sphere around its own axis (Raxis) and the other for the rotation of the sphere

around the circular track (Rtrack).

Since Raxis is performed around an axis parallel to Y-axis, we can formulate Raxis as

a composition of translation (of the axis to the Y-axis), the actual rotation with respect to

the Y axis and reverse translation (of the axis to its original place). Therefore, Raxis =

T(0, 0, 5).RY (θ).T(0, 0,−5). Since the sphere can rotate around its axis at a speed of 1◦/min,

in one and half hours, it can rotate 90◦. Therefore, θ = 90◦.

Example 3.2
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At the same time, the sphere is rotating along the circular track with a speed of 360◦/6 = 60◦/hour.

Therefore, in one and half hours, the sphere can move 90◦ along the track.

Therefore,

M = Rtrack(90◦)Raxis(90◦)

= RY (90◦)T(0, 0, 5)RY (90◦)T(0, 0,−5)

=









0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

















1 0 0 0

0 1 0 0

0 0 1 5

0 0 0 1

















0 0 1 0

0 1 0 0

−1 0 01 0

0 0 0 1

















1 0 0 0

0 1 0 0

0 0 1 −5

0 0 0 1









=









−1 0 0 5

0 1 0 0

0 0 −1 5

0 0 0 1









Thus, the position of the point after one and half hours is

P′
= MP =









−1 0 0 5

0 1 0 0

0 0 −1 5

0 0 0 1

















0

0

6

1









=









5

0

−1

1









.

The transformed position of the black spot (5, 0,−1) is clearly not visible from the observer’s

position.

SUMMARY

In this chapter, we have learnt to construct a scene from basic object definitions. The

scene is constructed by applying transformations on the objects. In the process, we learnt

the concepts of local coordinate (the coordinate system in which the object is defined)

and world coordinate (the coordinate in which the objects are assembled to construct

the scene).

There are four basic transformations, which are used either individually or in

sequence to perform various transformations on an object. The four are translation,

rotation, scaling, and shearing, which can change the position, shape, and size of an

object.

While we can represent transformations in analytical form, it is more convenient to represent

them as matrices for implementing graphics systems. In order to be able to represent all trans-

formations in matrix form, we use the homogeneous coordinate system, which is essentially an

abstraction and a mathematical trick. 2D transformations are represented as 3 × 3 matrices in

homogeneous coordinate system.

When we compose two or more basic transformations, we follow the right-to-left rule,

meaning that the first transformation is placed as the rightmost, the second transformation is

placed on the left, and so on till the last transformation. Then we multiply the transformation
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matrices together to obtain the composite transformation. However, while composing the basic

transformations, it is very important to arrange them in proper sequence. Otherwise, the

composite matrix will be wrong.

The transformations in 3D are performed in almost a similar manner as 2D transformations.

The only notable differences are (a) the matrices are 4 × 4, (b) there are three basic rotation

matrices for each of X, Y and Z axis (as opposed to one in 2D), (c) the way shearing matrix

looks, and (d) the way rotation about any arbitrary axis takes place.

After the first two stages (object definition and geometric transformations), we now know

how to construct a scene. The next task is to assign colors to it, so that it looks realistic. Color

assignment is the next stage of the graphics pipeline,which we shall discuss in the next chapter.

The Graphics Gems series of books (Glassner [1990],Arvo [1991],Kirk [1992],Heckbert [1994]

and Paeth [1995]) contains useful additional information on geometric transformation.Blinn and

Newell [1978] contains discussion on homogeneous coordinates in computer graphics. More

discussion on the use of homogeneous coordinates in computer graphics can be found in Blinn

[1993].

BIBLIOGRAPHIC NOTE

KEY TERMS

Composite transformation – composition (by matrix multiplication) of two/more basic modeling

transformations to obtain a new transformation

Differential scaling – when the amounts of change to an object size along the axial directions

(X , Y , and Z) are not the same

Homogeneous coordinate system – an abstract mathematical technique to represent any

n-dimensional point with a (n + 1) vector

Local/Object coordinates – the Cartesian coordinate reference frame used to represent individ-

ual objects

Modeling transformation – transforming objects from local coordinates to world coordinates

through some transformation operation

Rotation – the basic modeling transformation that changes the angular position of an object

Scaling factor – the amount of change of object size along a particular axial direction

Scaling – the basic modeling transformation that changes the size of an object

Scene/World coordinates – the Cartesian coordinate reference frame used to represent a scene

comprising of multiple objects

Shearing factor – the amount of change in shape of an object along a particular axial direction

Shearing – the basic modeling transformation that changes the shape of an object

Translation – the basic modeling transformation that changes the position of an object

Uniform scaling – when the amounts of change to an object size along the axial directions (X , Y ,

and Z) are the same

EXERCISES

3.1 What is the primary objective of the modeling transformation stage? In which coordinate

system(s) does it work?

3.2 Discuss how matrix representation helps in implementing modeling transformation in

computer graphics.
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3.3 Suppose you want to animate the movement of a pendulum, fixed at the point (0,5). Ini-

tially, the pendulum was on the Y-axis (along −Y direction) with its tip touching the origin.

The movement is gradual with a rate of 10
◦
/s. It first moves counterclockwise for 9 s, then

returns (gradually) to its original position, then moves clockwise for 9 s, then again returns

(gradually) to its original position and continues in this manner. Determine the transforma-

tion matrix for the pendulum in terms of t. Use the matrix to determine the position of the

pendulum tip at t = 15s.

3.4 Derive the matrices for the following 2D transformations.

(a) Reflecting a point about origin

(b) Reflecting a point about the X-axis

(c) Reflecting a point about the Y-axis

(d) Reflecting a point about any arbitrary point

3.5 Explain homogeneous coordinate system. Why do we need it in modeling

transformation?

3.6 Although we have treated the shearing transformation as basic, it can be considered as a

composite transformation of rotation and scaling.Derive the shearing transformation matrix

from rotation and scaling matrices.

3.7 Consider a line with end points A(0, 0) and B(1, 1). After applying some transformation on

it, the new positions of the end points have become A′
(0,−1) and B′

(−1, 0). Identify the

transformation matrix.

3.8 A triangle has its vertices at A(1, 1), B(3, 1), and C(2, 2). Modeling transformations are

applied on this triangle which resulted in new vertex positions A′
(−3, 1), B′

(3, 1), and

C′
(2, 0). Obtain the transformation matrix.

3.9 A square plate has vertices at A(1, 1), B(−1, 1), C(−1, 3), and D(1, 3). It is translated by

5 units along the +X-direction and then rotated by 45
◦

about P(0, 2). Determine the final

coordinates of the plate vertices.

3.10 Consider an object made up of a triangle ABC with A(1, 2), B(3, 2), and C(2, 3),

on top of a rectangle DEBA with D(1, 1) and E(3, 1). Calculate the new posi-

tion of the vertices after applying the following series of transformations on the

object.

(a) Scaling by half along the X-direction, with respect to the point (2, 2)

(b) Rotation by 90
◦

counterclockwise, with respect to the point (3, 1)

3.11 Consider Fig. 3.12. In this figure, the thin circular ring (with radius = 1 unit) is rolling down

the inclined path with a speed of 90
◦
/s. Assuming the ring rolls down along a straight

Z

p

X

0,0,20

0,0,0
20,0,0

Fig. 3.12 Initial position of the ring
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line without any deviation, determine the transformation matrix to obtain the coordinate

of any surface point on the ring at time t. Use the matrix to determine the position of

p at t = 10s.

3.12 Consider a sphere of diameter 5 units, initially (time t = 0) centered at the point

(10,0,0). The sphere rotates around the Z-axis counterclockwise with a speed of 1
◦
/min.

An ant can move along the vertical great circular track (parallel to the XZ plane) on

the sphere counterclockwise. It is initially (t = 0) located at the point (10,0,5) and

can cover 1 unit distance along the track in 1 sec. (assume π ≈ 3). Determine the

composite matrix for the ant’s movement and use it to compute the ant’s position

at t = 10 min.
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CHAPTER

4 Illumination,

Lighting Models,

and Intensity

Representation
Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the fundamental activities performed in the illumination stage

• Learn about the concept of coloring of a point and the factors that influence our

perception of color

• Understand the point light source and spotlight source

• Learn about the ambient, diffuse, and specular reflection types that contribute towards

the perception of color

• Gain an understanding of the simple lighting model to compute color at a given point

• Learn about light attenuation, its effect on color perception, and the way it is computed

• Understand the flat, Gouraud, and Phong shading models

• Learn about the process of mapping the real color values to the device supported

intensity levels represented as bit patterns

• Understand the concept of gamma correction

• Get an overview of the process of halftoning-used to represent multiple intensity levels

in bi-level devices

• Learn about the dithering process and the Floyd–Steinberg error diffusion method for

dithering

INTRODUCTION

In computer graphics, we are concerned about synthesizing an image. The image is noth-

ing but a snapshot of a scene consisting of objects. So far, we have discussed the different

methods and techniques to represent individual objects (Chapter 2) as well as putting the

objects together to construct a 3D scene (Chapter 3). The next task is to assign colors in an

appropriate way to the points in the scene. Without proper coloring, we will not be able to

perceive depth, which is of utmost importance in creating the impression of three dimen-

sions (see for example Fig. 4.1). The process of assigning appropriate colors to the points of

a scene is conceptually the same as illuminating the scene with light, which is done with the

help of lighting models. In this chapter, we shall discuss the process of assigning colors to a

scene, which is the third stage of the 3D graphics pipeline.
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(a) (b)

Fig. 4.1 In (a), the same color is applied to all the points on the ball. In (b), the ball is colored

in a way such that we get the impression of 3D. The shading in (b) is what we are refering to

as the appropriate coloring to give us an impression of 3D.

As we shall see, a lighting model computes colors of the surface points in terms of (con-

tinuous) intensity values (which are real numbers). We know that computers cannot work

with continuous values, everything has be discretized in terms of 0s and 1s. Therefore, once

the lighting model performs its task (of computing colors), we need to map the continuous

values to some discrete representations that can be manipulated by the computer. In this

chapter, we shall also discuss the mapping process.

4.1 BACKGROUND

When we talk about color of a point, we are basically referring to the following pro-

cess: there is a (may be more than one also) source which emits light. The emitted light

energy falls upon the point. Sometimes, the emitted light falls upon the point after get-

ting reflected from the surrounding surfaces. The transport of the light energy from light

source to the point is called illumination. The incident light then gets reflected from the

point and reaches the eye of the viewer. The intensity of the light that reaches the viewer’s

eye is the perceived color or simply the color of the point. This process is illustrated

in Fig. 4.2.

The process of computing the luminous intensity (i.e., outgoing light) at the point is

known as lighting. In computer graphics, we are interested in simulating the lighting process.

A related term is shading (also known as surface rendering), which refers to the process of

assigning colors to pixels.

The luminous intensity or color of a point depends on both the properties of the

light source and the surface on which the point lies. The surface properties include opti-

cal properties such as the reflectance and refractance as well as the geometric attributes

such as the position and orientation with respect to the light source. In computer graph-

ics, typically three types of light sources are considered for simulation of the light-

ing process: the point light source, the directional light source or spotlight, and the

ambient light.

A point light source emits light equally in all directions from a single point (i.e., does not

have any dimension). Such sources are characterized by their position and the intensity of
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Direct source

Point

Viewer's eye

Indirect

source

Fig. 4.2 The picture depicts the process behind the perception of color of a point. The light

emitted from the light bulb (direct source) as well as coming after reflection from the cylinder

(indirect source) is incident on the point. It then gets reflected from the point and comes to

the viewer’s eye, which gives the viewer the sensation of color at the point

the emitted light. Infinitely distant light sources such as sunlight can be modeled with point

light source. In such cases, the light source is characterized by only the intensity of the emit-

ted light. The directional light sources or spotlights are used to simulate the beam of light

effect. A spotlight consists of a point light source, which emits light within an angular limit,

as shown in Fig. 4.3. Points within this limit are illuminated while outside points are not.

Thus, the spotlights are characterized by the position of the light source, the angular limit,

and the intensity of the emitted light.

Even if an object is not illuminated directly by some light source (such as a point source

or spotlight), we are still able to see it. This is a result of indirect illumination from emitters,

which are the surrounding surfaces that reflect light. For example, the cylinder in Fig. 4.2

is one such emitter. It is usually very expensive to calculate (in real time) the contribution

of those emitters to the color of a point. To avoid expensive calculations, a simplification

How is shading different from lighting?

Both the terms lighting and shading refer to the

process of computing outgoing light (the color)

at a point. However, in the context of computer

graphics, the two terms represent two different

ways of computing colors at a point. Lighting

refers to the computation of colors at a point

taking into account the properties of the light

source and the surface on which the point lies.

In other words, lighting refers to the simulation

of the optical phenomenon. Usually, this is done

through some model of lighting, which involves

lots of computations as we shall see in subse-

quent discussions. In computer graphics,generat-

ing a realistic image involves computation of color

at a large number of points of the scene. Con-

sequently, applying lighting models for the pur-

pose will be inappropriate to generate a realistic

3D image in real-time. In order to alleviate this

problem, an alternative approach is used. In the

alternative approach, the object surfaces are first

mapped to pixels. Lighting model is used to com-

pute colors for a selected small number of pixels

(surface points).Those color values are then used

to interpolate the colors of the remaining pixels

that are part of the surfaces. The interpolation

involves much less computation, thereby saving

lots of time. This interpolation-based alternative

process of pixel coloring is called shading.
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q

P

Fig. 4.3 The spotlight, characterized by the point light source P and the angular limit θ

is used in computer graphics, called the ambient light source. Ambient sources do not have

any spatial or directional characteristics. They are assumed to illuminate all surfaces equally

and are characterized by the ambient light intensity.

4.2 SIMPLE LIGHTINGMODEL

In the preceding discussion, we saw that the color of a point is basically the intensity of the

light reflected from that point reaching the viewer’s eye. Therefore, we need to calculate the

intensity of the reflected light to assign color to the point. This is done with the lighting

models. In this section, we shall discuss a simple lighting model. In order to explain the

model, we shall first assume monochromatic light and a single point light source. Later on

we shall generalize the idea.

4.2.1 Simple Model for Monochromatic Single Point Light Source

Let us have a relook at Fig. 4.2. We can see that the light reflected from the point is a result

of two incident lights: one coming from the light source (direct light) and the other coming

from the cylinder (ambient light). Thus, the reflected light intensity is a sum of the inten-

sities of the ambient light reflection and the direct light reflection. Reflection from a point

can occur in either of the two ways: diffuse reflection and specular reflection. From a rough

or grainy surface, incident light tends to reflect in all directions. This is known as diffuse

reflection. Diffuse reflection can occur for both the direct light source and the ambient light.

For a shiny/smooth surface, however, light gets reflected in a specific direction (or region).

If a viewer is situated within that region (or along the direction), a bright spot is visible. This

is known as specular reflection. These different types of reflections are shown in Fig. 4.4.

What Fig. 4.4 shows is that the intensity of the light reaching the eye of a viewer from a

point can be modeled as the sum of three intensities.

Specular

Diffuse

Ambient

Fig. 4.4 The figure illustrates how the color of a point depends on the light source

(direct/ambient) and reflection types (specular/diffuse)
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1. Intensity of the ambient light after diffuse reflection from the point (Iamb).

2. Intensity of the light from the light source after diffuse reflection from the point (Idiff ).

3. Intensity of the light from the light source after specular reflection from the point (Ispec).

In other words, the intensity (color) of a surface point (Ip) can be represented as shown in

Eq. 4.1.

Ip = Iamb + Idiff + Ispec (4.1)

The reflected light intensity is a fraction of the incident light intensity. This fraction is

determined by a surface property, known as reflection coefficient or reflectivity. In order

to control the lighting effect in our synthesized image, we shall define the following three

reflection coefficients. For either of these coefficients, the value varies between 0.0 (rep-

resenting dull surface with no reflection) and 1.0 (representing shiny surface that reflects

almost all the incident light).

1. The diffuse reflection coefficient for ambient light ka.

2. The diffuse reflection coefficient for direct light kd .

3. The specular reflection coefficient for direct light ks.

In order to model the contribution of the ambient light intensity, we shall assume that

there is an ambient light in the scene with intensity Ia (that means, every surface is fully

illuminated by the scene’s ambient light Ia). Therefore, we can use Eq. 4.2 to compute the

intensity contribution of the ambient light in the overall intensity of the reflected light.

Iamb = ka.Ia (4.2)

The contribution due to the diffuse reflection of the direct light is modeled by making an

important assumption, namely that all the surfaces in the scene are ideal diffuse reflectors or

Lambertian reflectors. Such surfaces follow the Lambert’s cosine law, which states that the

energy reflected by a small portion of a surface from a light source in a given direction is

proportional to the cosine of the angle between that direction and the surface normal. The

law implies that the amount of incident light from a light source on a Lambertian surface is

proportional to the cosine of the angle between the surface normal and the direction of the

incident light (the angle is called the angle of incidence, see Fig. 4.5). Assume that there is

a direct light source emitting light with intensity Is. The angle of incidence at the point is θ .

Then, the amount of light incident on the point, according to the Lambert’s law, is Is cos θ .

Then, the contribution to the overall intensty of a point by the diffuse reflection of the light

coming from a direct light source can be computed using Eq. 4.3.

Idiff = kd.Is cos θ (4.3)

Let L̂ and N̂ denote the unit direction vector to the light source from the point and the unit

surface normal vector at the point, respectively. Then, cos θ = N̂ .L̂. Hence, we can rewrite

Eq. 4.3 as Eq. 4.4.

Idiff =

{

kdIs(N̂ .L̂) if N̂ .L̂ > 0

0 if N̂ .L̂ ≤ 0
(4.4)
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Light

source

Surface normal at P

P

q

Fig. 4.5 The figure illustrates the idea of Lambertian surface. The amount of incident light

at P from the light source is proportional to cos θ where θ is the angle of incidence

It may be noted that in modeling the ambient light contribution (Eq. 4.2), the position

of the viewer and the light source are not considered. The light source position becomes

important in modeling contribution due to diffuse reflection of the light from the light source

(Eq. 4.4). The other component of the intensity of the reflected light at a point is the specu-

lar reflection intensity Ispec. Computation of Ispec involves consideration of the light source

position as well as the viewer’s position. Let us try to understand the Ispec computation using

Fig. 4.6, which introduces the notions involved.

Phong Specular Re�ectionModel

In order to compute the specular intensity Ispec, we shall use the Phong specular reflection

model, which is an empirically derived model proposed by Bui Tuong Phong in 1973. The

model states that ‘the intensity of specular reflection is proportional to the cosine of the

angle (φ in Fig. 4.6) between the viewing vector (EV in Fig. 4.6) and the specular reflection

vector (ER in Fig. 4.6), raised to a power’. In other words, Ispec is proportional to cosns
φ

(0◦ ≤ φ ≤ 90◦). The quantity ns is the specular reflection exponent, which allows us to

generate different types of reflection effects by setting appropriate values. Shiny surface

effect can be generated by setting large values (> 100) to ns, whereas ns values closer to 1

generates the effect of reflection from rough surfaces.

Direction to the light

source

Surface normal at the point

Ideal specular reflection direction

(for mirror-like surfaces)

N

R

V Direction to the viewer

L

P

q
q
f

Fig. 4.6 Illustration of the idea of specular reflection and specular intensity (Ispec) computa-

tion. The angle θ between EN and ER in Fig. 4.6 is the specular reflection angle, which is equal

to the angle of incidence (the angle between EL and EN) according to Snell’s law.
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Representing R̂ in terms of N̂ and L̂

The ideal specular reflection direction R̂ in Eq.4.5

is more conveniently represented in terms of N̂

and L̂.The idea is illustrated in the following figure.

E −E

qqL

M M

N

R

In the figure, L and R are the light direction and

ideal specular reflection direction vectors, respec-

tively and N is the surface normal. E and M are

two auxilary vectors. Note that ER = EM − EE. Since

EL = EE + EM, we have EE = EL − EM. Therefore,

ER = EM − (EL − EM) = 2 EM − EL.

Note that EM is simply the projection of EL onto EN.

Thus, we can derive that EM =
EL.

EN

| EN|2
EN. Since EN is

unit normal, | EN|
2
= 1. Thus, EM = (EL.

EN) EN. Hence,

ER = 2(EL.

EN). EN − EL.

Using the Phong model, we can compute the specular intensity contribution as Ispec =

kd.Is cosns
φ. However, note that cos φ = V̂ .R̂. Therefore, we can use Eq. 4.5 to compute

Ispec.

Ispec =

{

ksIs(V̂ .R̂)ns if V̂ .R̂ > 0

0 if V̂ .R̂ ≤ 0
(4.5)

4.2.2 Intensity Attenuation

The computations we have discussed so far assume that the intensity of the light does not

change as it moves from the source to the surface point. Now assume there are two surface

points, one closer to the light source than the other. The intensity of the light received by

either of these points will be the same. Hence, the color computed at these points using our

simple lighting model will be the same. In other words, all surfaces are illuminated with

equal intensities (assuming same optical characteristics), irrespective of their distance from

the light source. Obviously, this is not desirable as it leads to indistinguishable overlapping

of the surfaces when those are projected on screen.

In order to overcome this problem, we incorporate intensity attenuation in our model

in the form of attenuation factors. Two such factors are used: radial attenuation factor

(AFrad) and angular attenuation factor (AFang). The radial factor accounts for the effect

of the diminishing light intensity over distance. The inverse quadratic function shown in

Eq. 4.6 is typically used to compute the radial attenuation factor. In Eq. 4.6, d is the dis-

tance between the light source and surface point; the coefficients a0, a1, and a2 are varied to

produce better realistic effects.

AFrad =
1

a0 + a1d + a2d2
(4.6)

The angular attenuation, on the other hand, is useful primarily to generate the spotlight

effect. The factor helps us take into account the fact that the light intensity changes as the
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angle between the spotlight cone axis and the surface point direction changes (i.e., the angle

θ in Fig. 4.3). A commonly used function to compute the angular attenuation is shown in

Eq, 4.7, where the angular attenuation exponent al is assigned some positive value.

AFang =

{

0 if the surface point is outside the angular limit θ

cosal
φ 0 ≤ φ ≤ θ

(4.7)

In order to take intensity attenuation into account, we adjust Eq. 4.1 as shown in Eq. 4.8.

Note that by setting the factor value to 1.0, we can eliminate the effect of attenuation from

our lighting calculation.

Ip = Iamb + AFrad.AFang[Idiff + Ispec] (4.8)

4.2.3 Simple Model for Colored Light

With monochromatic light source, we can generate different shades of gray. In order to gen-

erate color image, we have to consider color light source. In a color light source, the emitted

light intensity has three components corresponding to the primary colors red, green, and

blue. In other words, light source intensity is a three element vector: Is = (IsR, IsG, IsB). The

reflection coefficients are also specified as vectors. Thus, we specify ka = (kaR, kaG, kaB),

kd = (kdR, kdG, kdB) and ks = (ksR, ksG, ksB). Each component of the color is then calcu-

lated separately by applying Eq. 4.8 with the appropriate source intensity and the coefficient

values.

4.2.4 Simple Model for Multiple Point Light Sources

With the model represented by Eq. 4.8, we can generate the lighting effects in the presence

of a single light source. We may wish to generate the effect of illumination by multiple

(point) light sources. In such cases, Eq. 4.8 takes a more general form as in Eq. 4.9, where

diffuse and specular reflections due to each (ith) light source are computed separately and

then added together.

Ip = Iamb +

n
∑

i=1

[AFradAFang(Idiff + Ispec)]i n = total number of light sources (4.9)

Note that for multiple colored light sources, Eq. 4.9 is applied for individual components

(R, G, and B) of the source intensities.

Local vs global lighting models

The simple lighting model we discussed is an

example of local lighting models. In such mod-

els, emphasis is given on the direct impact of the

light source in determining the color of a point.

The ambient light sources are considered in a

very simplified manner. In contrast, a global light-

ing model tries to mimic the illumination process

more accurately by taking into account secondary

effects such as the movement of light through

transparent/translucent material (i.e., both reflec-

tion and refraction are considered) and the bounc-

ing of the light from one object surface to another.

Thus, global models are more complex and usu-

ally require more time and resources.
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4.2.5 Transparent Surfaces

So far we assumed opaque surfaces; surfaces that do not allow light to pass through them.

If any other object is present behind the surface, it is not visible. For such surfaces, it is

sufficient to consider only reflection. Now consider an empty glass. If we put it in front of

any other object, say an apple, we get to see the apple through the glass. Such surfaces,

which allow objects behind them to be seen, are called transparent surfaces. Sometimes,

some transparent surfaces such as frosted glass and some plastic material make the objects

behind appear blurred. Those surfaces are known as translucent surfaces.

For an opaque object, we assumed that the color at any surface point is solely determined

by the reflected lights from that point. This is not the case for transparent surfaces. In addi-

tion to the reflection, color at any transparent surface point is also determined by a second

component: transmitted light. What happens is as follows: Some portion of the light inci-

dent at any surface point passes through the surface material. This phenomenon is known as

refraction. This refracted light then gets reflected from the surface behind and again passes

through the transparent surface towards the viewer. The idea is schematically illustrated in

Fig. 4.7.

Clearly, we need to model the refraction path of light through the materials for realistic

synthesis of transparent material. In general, refraction models are complex and computa-

tion intensive. These require considerations such as the refractivity (represented by the index

of refraction) and the resultant shift in light direction. However, we can avoid all these com-

plexities and use a simplistic approximate model to mimic the phenomenon, as we did in the

case of reflection. The model is shown in Eq. 4.10.

I = (1 − kl)Irefl + klItrans (4.10)

In this model, intensity at any point on a transparent surface is a weighted sum of the

reflected and transmitted lights. In the equation, Irefl is the light reflected from the surface

Refracted light
Incident light

Surface point

Transparent surface

Object behind

transparent surface

Fig. 4.7 The mechanism behind transparent surfaces. Color at any surface point is deter-

mined as a combination of the reflected and refracted lights.
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point (can be calculated using our simple lighting model). Itrans is the intensity of the back-

ground light (i.e., reflected light intensity from the background object) transmitted through

the surface. Again, we can calculate Itrans with the simple lighting model. kl is called the

transparency index, which is used to control the degree of the transparency effect. It is

assigned a value between 0.0 and 1.0. The term (1 − kl) is called the opacity factor. For

example, if kl = 0.7, 70% of the background light is transmitted through the surface, indi-

cating a highly transparent surface. On the other hand, transparency reduces (and opacity

increases) as the value of kl gets closer to 0.0.

4.3 SHADINGMODELS

With the simple lighting model, we can compute the intensity of the reflected light (color)

of a surface point in a 3D scene. As we saw, the computations involve lots of operations.

Consequently, generating an image using computer graphics techniques is very expensive

in terms of computing resources (processor, memory, etc.) and time. Most of the graphics

applications nowadays require the screen image to change frequently (e.g., computer anima-

tion, games), which makes the process even more complicated as the computations have to

be carried out repeatedly and within a short time span.

We can greatly reduce the number of computations in image generation by using the shad-

ing models. These models allow us to assign colors to the screen pixels without performing

the lighting calculations for all the points to be rendered. Colors of only a few of the points

are computed using the lighting model. Those colors are then used to interpolate colors at

the other surface points mapped to the screen pixels. Note that there are two differences in

the coloring of an image using lighting and shading models.

1. Application of the lighting model is very expensive as it involves large number of opera-

tions. Shading models, on the other hand, are interpolation-based approaches, which can

be applied using efficient incremental procedures.

2. Lighting models are applied on the scene description (in 3D world coordinate sys-

tem). In contrast, shading models work at the pixel-level, after the scene is mapped to

the screen.

4.3.1 Flat Shading

Flat shading is the simplest of the shading models and involves the least number of com-

putations. In flat shading, the color of any one point on a surface is computed using the

lighting model. This color is then assigned to all other points on the surface that are mapped

to screen pixels. Clearly, this may result in unrealistic images. Consequently, flat shading is

not good to color any surface. In order to make the method work, the surface should satisfy

the following properties.

1. The surface should be part of a polyhedral object and not a polygonal approximation of a

curved surface. In other words, the surface should be defined as rather than approximated

to a polygon.

2. All light sources should be sufficiently far from the surface. In other words, the vector

dot product N̂ .L̂ and the attenuations are constant over the surface.
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3. Viewing position is sufficiently far from the surface, ensuring that the vector dot product

V̂ .R̂ is constant over the surface.

4.3.2 Gouraud Shading

Although flat shading is very fast due to minimum computation, it can lead to unrealistic

images if the surfaces do not satisfy the properties we discussed in the previous section. With

a little increase in computation, we can color surfaces more realistically using the Gouraud

shading1 without requiring the surfaces to satisfy the properties. In Gouraud shading, we

assign colors to pixels using Algorithm 4.1.

Note that in the first step, we mentioned polygonal surfaces only. However, the surface

may be polygonal by definition or due to the polygonal mesh approximation of a curved

surface, unlike in the flat shading. Now, let us try to understand the steps of the algorithm.

The first step implies that the lighting model is used to compute colors only at the vertices.

Such vertices may be shared by more than one surface, as shown in Fig. 4.8. For each of

these vertices, we calculate the average unit normal vector, which is the average of the unit

normals of the surfaces that share the vertex. If the vertex is shared by n surfaces and the

unit normal of the ith surface is denoted by N̂i, then the average unit normal N̂AVG at the

Steps for Gouraud shading

1: Determine the average unit normal vector at each vertex of the polygonal surface.

2: Apply lighting model at each vertex to compute color at that position.

3: Linearly interpolate the vertex intensities over the projected area of the polygon.

Algorithm 4.1

N4

NAVG = N3

N1

N2

Surface 4

Surface 3

Surface 1

Surface 2

Vertex

N1 + N2 + N3 + N4

N1 + N2 + N3 + N4

Fig. 4.8 Illustration of a shared vertex. N̂i denotes the unit normal vectors for the ith surface.

The shared vertex is shown with a filled circle, for which the average unit normal vector N̂AVG

is computed as shown.

1Also known as the intensity interpolation surface rendering.
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vertex is computed using Eq. 4.11.

N̂AVG =

∑n
i=1 N̂i

|
∑n

i=1 N̂i|
(4.11)

In the second step, the N̂AVG is used in our simple lighting model (instead of N̂) to com-

pute color at the vertex. This step is performed for all the vertices of the polygon. Once this

step is completed, we use the vertex colors to interpolate the colors of the pixels that are part

of the projected pixel in the third and final step.

Let us try to understand the third step in terms of an example. Consider Fig. 4.9. In the

figure, the shaded area represents projection of a surface on the pixel grid. After the second

step, the colors are computed at the three vertices 1, 2, and 3. We use these colors to interpo-

late colors of the intermediate points 4, 7 (two edge intersection points on a scan line) and 5

(a pixel inside the projected surface on the same scan line) using Eq. 4.12, where Ii denotes

the intensity (color) at the ith point.

I4 =
y4 − y2

y1 − y2
I1 +

y1 − y4

y1 − y2
I2 (4.12a)

I7 =
y7 − y2

y3 − y2
I3 +

y3 − y7

y3 − y2
I2 (4.12b)

I5 =
x7 − x5

x7 − x4
I4 +

x5 − x4

x7 − x4
I7 (4.12c)

The interpolation process can be implemented efficiently with an iterative approach. In

order to understand the iterative approach, let us consider the pixels 5 and 6 in Fig. 4.9.

y

x

Vertex 1 (x1, y1)

Vertex 2 (x2, y2)

Vertex 3 (x3, y3)

8

4 5 6 7 (i + 1)th scan line

i th scan line

x x + 1

Fig. 4.9 Illustration of the interpolation process in Gauraud shading. The numbers 4, 7, and

8 denote the three points of intersection of the edges of the projected polygon surface with

the scan lines. The numbers 5 and 6 denote two consecutive pixels on the same scan line,

which are contained within the projected surface.
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Note that they are on the same scan line with their x-coordinates differing by one. Now, we

can represent the color of pixel 6 in terms of the colors of the pixels 4 and 7 in the same way

as we have done for pixel 5 (see Eq. 4.12) as,

I6 =
x7 − x6

x7 − x4
I4 +

x6 − x4

x7 − x4
I7.

However, x6 = x5 + 1. Thus,

I6 =
x7 − (x5 + 1)

x7 − x4
I4 +

(x5 + 1) − x4

x7 − x4
I7

=
x7 − x5

x7 − x4
I4 −

I4

x7 − x4
+

x5 − x4

x7 − x4
I7 +

I7

x7 − x4

=
x7 − x5

x7 − x4
I4 +

x5 − x4

x7 − x4
I7 −

I4

x7 − x4
+

I7

x7 − x4

= I5 +
I7 − I4

x7 − x4

Note that the term I7−I4
x7−x4

is constant for a particular scan line. Let us denote this as Ci for

the ith scan line. Then, the colors of the pixels along the ith scan line can be computed by

simply adding the Ci to the previous color value. We start the process from the pixel next

to the leftmost edge-scan line intersection point and continue to do this till we reach the

rightmost edge-scan line intersection point.

Like the pixels along the scan line, we can also compute the pixel colors across scan lines

in iterative manner. Consider for example the pixels 4 and 8 in Fig. 4.9. They are on two

consecutive scan lines whose y-coordinates differ by one. Similar to I4 in Eq. 4.12, we can

represent the color of pixel 8 in terms of the vertex colors I1 and I2 as

I8 =
y8 − y2

y1 − y2
I1 +

y1 − y8

y1 − y2
I2.

However, y8 = y4 − 1. Thus,

I8 =
(y4 − 1) − y2

y1 − y2
I1 +

y1 − (y4 − 1)

y1 − y2
I2

=
y4 − y2

y1 − y2
I1 −

I1

y1 − y2
+

y1 − y4

y1 − y2
I2 +

I2

y1 − y2

=
y4 − y2

y1 − y2
I1 +

y1 − y4

y1 − y2
I2 −

I1

y1 − y2
+

I2

y1 − y2

= I4 +
I2 − I1

y1 − y2

For any edge of the polygon, the term I2−I1
y1−y2

is constant. Let Cj denote the constant value

for the jth edge. Then, the colors of the pixels across the scan lines which are on the same

edge can be computed by simply adding the Cj to the color value of the previous pixel on the

edge. We start the process from the topmost pixel on the edge and proceed downwards till we
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Iterative algorithm for Gouraud shading

1: Determine the average unit normal vector at each vertex of the polygonal surface.

2: Let CR = color of the rightmost edge pixel on the ith scan line, xr = the x-coordinate of the rightmost

edge pixel, CL = color of the leftmost edge pixel on the ith scan line and xl = the x-coordinate of the

leftmost edge pixel. Compute and store the scan line constants Ci =
CR−CL
xr−xl

for each scan line that lies

within the projected area of the polygon.

3: Let CT = color of the topmost vertex pixel of the jth left edge, yt = the y-coordinate of the topmost

vertex pixel of the edge, CB = color of the lowermost vertex pixel of the jth left edge and yl = the

y-coordinate of the lowermost vertex pixel of the edge. Compute the edge constants Cj =
CB−CT
yt−yl

for

all the left edges of the polygon.

4: Initialize a temporary variable color = 0.0.

5: for each scan line i within the polygon area starting from the top do

6: for each pixel on the scan line within the projected surface area, starting from the left do

7: if it is a vertex pixel then

color = color computed using the lighting model.

8: else if it is a pixel on a left edge then

j color = color of the pixel on the previous scan line and same edge + Cj.

9: else

color = color of previous pixel on the same scan line +Ci.

10: end if

11: end for

12: end for

Algorithm 4.2

reach the lower most pixel on the edge. Thus, using the vertex colors we can compute colors

of all the other pixels using the iterative approach. With the understanding of the iterative

approach, we can rewrite Algorithm 4.1 more elaborately as shown in Algorithm 4.2.

Gouraud shading is typically implemented along with a later stage of the pipeline, namely

the hidden surface removal.

Limitations of the model Although Gouraud shading improves photo-realism of the syn-

thesized image to a great extent with little extra computation compared to flat shading, the

method has a couple of limitations.

1. It is not good for generating specular reflection effect. This is because the linear interpola-

tion in Gouraud shading results in a smooth change of color values between neighboring

pixels unlike specular reflections where at the boundary of the reflection region, sudden

change in color values take place.

2. Another problem with Gouraud shading is that of the occurrence of Mach bands. This

is a psychological phenomenon in which we see bright bands where two blocks of solid

colors meet.

4.3.3 Phong Shading

The limitations of the Gouraud shading can be overcome with a more accurate shad-

ing model, known as the Phong shading (or the normal–vector interpolation rendering),
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although application of the model involves large compuation. Consequently, it does not have

the advantage of other shading models, namely fast coloring of surface points.

The steps of the phong shading are similar to that of Gouraud shading, with the two majors

differences being,

1. Here, the linear interpolation is used to determine normal vectors at each projected pixel

position.

2. At each projected pixel, the lighting model is used to compute colors considering the

interpolated normal vectors.

In order to understand the process, reconsider Fig. 4.9. The interpolated normal vectors at

the points 4, 5, and 7 can be computed similar to that of Eq. 4.12, by replacing the intensity

terms with the corresponding vector terms as shown in Eq. 4.13.

N̂4 =
y4 − y2

y1 − y2
N̂1 +

y1 − y4

y1 − y2
N̂2 (4.13a)

N̂7 =
y7 − y2

y3 − y2
N̂3 +

y3 − y7

y3 − y2
N̂2 (4.13b)

N̂5 =
x7 − x5

x7 − x4
N̂4 +

x5 − x4

x7 − x4
N̂7 (4.13c)

Now, these interpolated vectors are used to compute colors at those points applying the

lighting model. As you can see, we can formulate the interpolation as an iterative process just

the way we did for Gouraud shading. Hence, we can develop the Phong shading algorithm

by modifying Algorithm 4.2 slightly, which is left as an exercise (see Exercise 10).

4.4 HANDLING THE SHADOW EFFECT

When an opaque surface is positioned in front of another surface with respect to a light

source, it generates a shadow of itself on the surface behind. In other words, the surface

behind (or a portion of it) does not get illuminated by the light source. With visibility detec-

tion methods discussed in a later chapter (Chapter 8), it is possible to determine regions

that are not illuminated by light sources. If we assume that the viewing position is the same

as that of the light source, visibility detection methods will tell us the surfaces (or surface

sections) in the scene that are not visible. These are the shadow areas.

We can have simple mechanism to create shadow effect. Once we are able to determine

shadow areas in a scene, we can use only the ambient light component to illuminate those

areas. Of course, this approach does not produce high quality images as there will be no

variation in the shadows. We can do somewhat better by using pre-specified texture pat-

terns (see the next chapter for discussion on texture synthesis) along with the ambient light.

Depending on the number and position of light sources in a scene and their intensities, we

can create a set of texture patterns (also known as texture maps, see the next chapter). These

patterns can then be combined with the ambient light to determine colors at the shadow

areas. For example, we can have one pattern for creating shadows that result due to high-

intensity light sources (e.g., the sunlight in the afternoon) and another pattern for shadows

due to low-intensity lights (e.g, shadows in a dimly-lit room in the night).
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Let us try to understand the computations involved in terms of an example. Assume a cubical

object with its vertices specified as A(0, 0, 2), B(2, 0, 2), C(2, 2, 2), D(0, 2, 2), E(0, 0, 0), F(2,

0, 0), G(2, 2, 0), and H(0, 2, 0). We want to create a scene of a room, in which the object is

treated as a ‘shelf attached to a wall’, keeping the relative positions of the corresponding ver-

tices same as in the original object. The wall is parallel to the XZ plane, cutting the positive

Y-axis at a distance of 1 unit. The length of the sides of the shelf is half that of the original

object. The surface of the shelf C′D′H′G′ corresponding to the surface CDHG of the object is

on the wall, with its lower left corner at (1, 1, 1). Fig. 4.10 shows the shelf as it looks like

after projecting onto the pixel grid, along with some of the mapped vertices and one vertex

location.

Y

X

G″

E”
F”

P3

P4

P2

P1C″D″

A″(4, 7)

Fig. 4.10 The projection of the cube on the pixel grid,with the coordinates of one projected vertex

Let the room have a monochromatic point light source at the position (1, −1, 3) and intensity

Is = 2 units. Further assume that there is an ambient light with intensity of 1 unit and the object

have ka = 0.5, kd = 0.25, ks = 0.25, and ns
= specular exponent = 10. If you are looking at the

shelf from a location (3, −1, 3), what would be the intensities at the pixels P1, P2, and P3 assuming

flat shading?

Solution The first thing to note here is that the original object has undergone transformations

before it is made a part of the scene. However, we don’t need to find out the vertex coordi-

nates of the transformed object using the transformation matrices, since the final size, position

and orientation are already specified in the problem. Using those specifications, we can deter-

mine the vertices of the shelf as A′
= (1, 0, 2), B′

= (2, 0, 2), C′
= (2, 1, 2), D′

= (1, 1, 2),

E′
= (1, 0, 1), F′

= (2, 0, 1), G′
= (2, 1, 1), H′

= (1, 1, 1). The transformed object is shown

in Fig. 4.11.

From the given specification and Fig. 4.10, we can also determine the coordinates of

some of the projected vertices and the pixels of interest (P1, P2, and P3), which are as

follows.

D′′
= (7, 10), P1 = (8, 8), P2 = (10, 8), C′′

= (7, 15), P3 = (10, 6)

Example 4.1
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Y

Z

X

A′ (1, 0, 2) B′ (2, 0, 2)

F′ (2, 0, 1)

G′ (2, 1, 1)
H′ (1, 1, 1)

D′ (1, 1, 2)

E′ (1, 0, 1)

C′ (2, 1, 2)

Fig. 4.11 The cube in 3D world coordinate after transformation

Note that we don’t need to know anything about projection to find these coordinates, since the

specifications are sufficient along with the knowledge that the distance between any two pixels on

the grid is 1. Along with the coordinates of the above pixels, we also need the coordinate of the

pixel P4 (in Fig. 4.10) for ease of calculation, which is (5, 8). Further note that the light source is

above the A′B′C′D′ surface and on the left side of the plane which contains the surface B′F′G′C′.

Hence, it will illuminate A′B′C′D′ but will not contribute anything towards the illumination of the

surface B′F′G′C′.

We can calculate the color at any point on the surface and use the same value throughout the

surface. Let’s calculate color at B′. We know that N̂ = (0, 0, 1) (i.e., the unit vector parallel to the

Z axis, assuming B′ to be part of the surface A′B′C′D′). The vector towards light source EL = (1,

−1, 3) − (2, 0, 2) = (−1, −1, 1). Thus, L̂ =

(

−
1
√

3
,−

1
√

3
,

1
√

3

)

. The view vector EV is (3, −1, 3) −

(2, 0, 2) = (1, −1, 1). Hence, V̂ =

(

1
√

3
,−

1
√

3
,

1
√

3

)

. Therefore, N̂ .L̂ =
1
√

3
≈ 0.58.

Now, we know that V̂ .R̂ = V̂ .[(2N̂ .L̂)N̂ − L̂], where R̂ is the unit vector along the ideal specular

reflection direction. From the values of the unit vectors, we get (2N̂ .L̂)N̂ − L̂ =
2
3
(1, 1,

√

3 − 1).

Thus, V̂ .R̂ =
2

3
√

3
(
√

3 − 1) ≈ 0.28.

Therefore the color at B′ (using Eq. 4.1) is = 0 × 5 × 1 + 0 × 25 × 2 × (0.58) + 0 × 25 ×

2 × (0 × 28) × 10 = 0.79 unit. Since P1 and P2 both are part of the same surface containing B′,

color at P1 = color at P2 = 0.79 unit. However, as we have informally discussed before, the light

source do not contribute in the illumination of the surface B′F′G′C′. Thus, color of any point on

this surface is decided by the ambient light only. Since P3 is part of the surface B′F′G′C′, color at

P3 = 0.5.1 = 0.5 unit. Note that the same results can be arrived at by considering the vectors only

(which is left as an exercise).
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What would the intensities of the same pixels P1, P2, and P3 be, assuming Gouraud shading?

Solution In order to calculate color, we need to calculate colors at the vertices A′, B′, C′, and D′,

using which we can interpolate other colors. The computation of the vertex colors are shown in

Table 4.1.

Table 4.1 The computation of the vertex intensities for Gouraud shading in

Example 4.2

Vertex Color computation

A′ ˆNAVG =
(−1, 0, 0) + (0,−1, 0) + (0, 0, 1)

|(−1, 0, 0) + (0,−1, 0) + (0, 0, 1)|
=

(

−
1
√

3
,−

1
√

3
,

1
√

3

)

L̂ =
(1,−1, 3) − (1, 0, 2)

|(1,−1, 3) − (1, 0, 2)|
=

(

0,−
1
√

2
,

1
√

2

)

V̂ =
(3,−1, 3) − (1, 0, 2)

|(3,−1, 3) − (1, 0, 2)|
=

(

2
√

6
,−

1
√

6
,

1
√

6

)

ˆNAVG.L̂ =
2
√

6

V̂ .R̂ = V̂[(2.N̂.L̂)N̂ − L̂] = −
4

3

(

1
√

2
+

1
√

3

)

< 0 (no specular component)

Color (IA′ ) = Iamb + Idiff = 0.5.1 + 0.25.2.

2
√

6
≈ 0.91

B′ ˆNAVG =
(0,−1, 0) + (0, 0, 1) + (1, 0, 0, )

|(0,−1, 0) + (0, 0, 1) + (1, 0, 0, )|
=

(

1
√

3
,−

1
√

3
,

1
√

3

)

L̂ =
(1,−1, 3) − (2, 0, 2)

|(1,−1, 3) − (2, 0, 2)|
=

(

−
1
√

3
,−

1
√

3
,

1
√

3

)

V̂ =
(3,−1, 3) − (2, 0, 2)

|(3,−1, 3) − (2, 0, 2)|
=

(

1
√

3
,−

1
√

3
,

1
√

3

)

ˆNAVG.L̂ =
1

3

V̂ .R̂ = V̂[(2.N̂.L̂)N̂ − L̂] =
4

9

Color (IB′ ) = Iamb + Idiff + Ispec = 0.5.1 + 0.25.2.

1

3
+ 0.25.2.

4

910
≈ 0.67

C′ ˆNAVG =
(0, 0, 1) + (0, 1, 0) + (1, 0, 0)

|(0, 0, 1) + (0, 1, 0) + (1, 0, 0)|
=

(

1
√

3
,

1
√

3
,

1
√

3

)

L̂ =
(1,−1, 3) − (2, 1, 2)

|(1,−1, 3) − (2, 1, 2)|
=

(

−
1
√

6
,−

2
√

6
,−

1
√

6

)

V̂ =
(3,−1, 3) − (2, 1, 2)

|(3,−1, 3) − (2, 1, 2)|
=

(

1
√

6
,−

2
√

6
,

1
√

6

)

ˆNAVG.L̂ = −
2

3
√

2
< 0 (no diffuse and specular components)

Color (IC′ ) = Iamb = 0.5.1 = 0.5

(Contd)

Example 4.2
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Table 4.1 (Contd)

Vertex Color computation

D′ ˆNAVG =
(−1, 0, 0) + (0, 1, 0) + (0, 0, 1)

|(−1, 0, 0) + (0, 1, 0) + (0, 0, 1)|
=

(

−
1
√

3
,

1
√

3
,

1
√

3

)

L̂ =
(1,−1, 3) − (1, 1, 2)

|(1,−1, 3) − (1, 1, 2)|
=

(

0,−
2
√

5
,

1
√

5

)

V̂ =
(3,−1, 3) − (1, 1, 2)

|(3,−1, 3) − (1, 1, 2)|
=

(

2

3
,−

2

3
,

1

3

)

ˆNAVG.L̂ = −
1

√

15
< 0 (no diffuse and specular components)

Color (ID′ ) = Iamb = 0.5.1 = 0.5

Using iterative method, we can now calculate colors at P1 and P2.

Color at P2 (IP2
) =

(

IC′ +
IB′−IC′

yC′′−yB′′

)

+
IB′−IC′

yC′−yB′
= 0.67 + 0.034 + 0.034 = 0.738 unit.

Let C =
IA′−ID′

yD′′−yA′′
≈ 0.14.

Then, color at P1 (IP1
) can be computed iteratively as (((((ID′ + C) + C) + C′) + C′) + C′),

where C′
=

IP2
−IP4

xP2
−xP4

=
IP2

−(ID′+2C)

xP2
−xP4

= 0.0196. Thus, IP1
≈ 0.84.

Since the light source does not contribute directly towards the illumination of P3, its intensity

will be 0.5.1 = 0.5 unit. The computation of the vertex intensities for Gouraud shading is shown

in Table 4.1.

4.5 INTENSITY REPRESENTATION

As Examples 4.1 and 4.2 illustrate, the lighting and shading models compute color (intensi-

ties) at any surface points as a real number between 0.0 and 1.0. If we go inside a graphics

system, we shall see that the computed intensity values are used to drive the mechanism to

draw pictures on the screen. For example, the computed intensity values are used to set the

voltages for the electron gun and the deflection arrangements of a CRT display (see Chap-

ter 1) such that electron beams with appropriate intensity are generated and directed towards

specific phosphor dots. However, due to the discrete nature of a computer, any real intensity

value cannot be represented and used for the purpose. The representation depends on the

design of the frame buffer.

4.5.1 Basic Idea

Consider a graphics system having a frame buffer that uses 8 bits to store the intensity values

for each pixel. With 8 bits, we can represent 28
= 256 values. Thus, the system can support

at most 256 intensity values for each pixel. The intensity values computed for a pixel by the

lighting/shading models, on the other hand, are infinite (any number between 0.0 and 1.0).

Therefore, we need to map these potentially infinite intensity values to the 256 values sup-

ported by the system. We cannot use any arbitrary mapping, however, as arbitrary mapping

may lead to visible distortion in the image. How can we achieve the objective?
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The idea is to distribute the computed intensty values among the system supported val-

ues such that the distribution corresponds to the way our eyes perceive intensity differences.

We take help of a psychological phenomenon to arrive at the distribution. Suppose you are

shown two sets of intensity values. In the first set, there are two intensities: 0.10 and 0.11

(i.e., a difference of 10%). In the second set also, there are two intensities: 0.50 and 0.55

(again, a difference of 10%). In both the cases, the intensity difference will look the same

although the absolute intensity values are different. In other words, we cannot perceive the

absolute difference in intensity values. Only the relative difference matters. Therefore, if the

ratio of two intensities is the same as the ratio of two other intensities, we perceive the dif-

ference as the same. Thus, if we want to distribute a continuous range of intensity values

(the range of computed values) into a finite set of discrete values (the values supported by

the device), what we have to do is to preserve the ratios in the successive intensity values.

Exploiting this idea, we can map the continuous intensity range (between 0.0 and 1.0) into

the set of discrete values in the following way.

Suppose the device supports N discrete values for each pixel, denoted by I0, I1, ... IN . We

can use a photometer to determine the minimum (I0) and maximum (IN ) brightness of the

device. This range is known as the dynamic range. The highest value in the range is usually

An example to illustrate the idea of intensity mapping (from computed value to device-supported

value)

Solution Suppose we have a display device, which supports a minimum intensity I0 = 0.01 as

found with a photometer. We assume the maximum intensity supported by the device IN = 1.0.

The device supports 8 bits for each pixel location. Then the number of intensity values N supported

by the device for each pixel is 2N
= 28

= 256.

Thus, the intensities values are I0, I1, ... I255. Then, 1.0 = r2550.01. Solving this equation, we get

r = 1.0182. Thus, I1 = 0.01820.01 = 0.0102, I2 = rI1 = 0.0104, and so on.

We now need to assign bit patterns to these 256 intensity values. One mapping is shown below as

an illustration, although it is possible in principle to have any arbitrary mapping.



















Intensity Bit pattern

I0 = 0.0100 00000000

I1 = 0.0102 00000001

I2 = 0.0104 00000010

· · · · · ·

I255 = 1.0 11111111



















Now, suppose the lighting model computes the intensity at a pixel location as 0.01039. We try to

find the nearest intensity value the pixel supports. In this case, it is 0.0104 (I2). Hence, the pixel

intensity is represented by the bit pattern 00000010 for I2. Note that the final intensity the pixel

gets is different from the computed intensity.

Example 4.3
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88 Computer Graphics

taken as 1.0. Thus, the intensities range between I0 to 1.0. In order to preserve ratio between

successive intensities, the following relations should hold.

I1

I0
=

I2

I1
−−−

IN

IN−1
= r

Here r is the common ratio. Therefore, I1 = rI0, I2 = rI1 = r(rI0) = r2I0, I3 = rI2 =

r(r2I0) = r3I0, and so on. In general, Ik = rkI0 for k > 0. Then we can say IN = rN I0. Since

we have already determined I0 and IN = 1.0, we can determine r. Using r, we can obtain N

intensity values. Once we obtain the intensities, we can assign a bit pattern to them.

Now asume that the lighting model computes an intensity value IP for a pixel. We find out

the nearest value to IP from the device-supported intensity values (say Ik). The frame buffer

stores the bit pattern for Ik at the pixel location.

4.5.2 Gamma Correction

We now know the procedure to map the computed intensity to one of the device-supported

intensities (and ultimately to a bit pattern). How this is going to be useful? Let us try to

understand in the context of a CRT. The bit pattern is used to design circuitry that can gen-

erate an appropriate voltage V . When V is applied to the electron gun, an electrom beam

of appropriate intensity is generated. The beam hits the specific phosphor dot on the screen

corresponding to the pixel, which then emits light with the required brightness.

Let us assume that the phosphor dot emits light with brightness I . Intuitively, we expect

I ∝ aV . In other words, the generated brightness is linearly proportional to the voltage

applied to the elctron gun (a is the proprotionality constant for a display device). However,

display devices do not follow such linear behavior. What happens instead is a non-linear

relationship: I ∝ aVγ . Hence, if we set V proportional to the intensity value we computed,

the brightness I we get will be different than what we expect.

To overcome this problem, what is done is known as the gamma correction. For a display

device, the non-linearity exponent γ is constant (although there may be different values for

the red, green and blue components). For the desired brightness I , we compute the desired

voltage V ′ with the inverse relation: V ′
= ( I

a
)

1
γ . If V ′ is used to set the electron gun voltage,

we get the required brightness.

Steps in intensity mapping

Let I be the intensity value calculated with an

illumination model.

1. Compute intensity levels for the device and

assign bit patterns to each level.

2. Determine nearest intensity level Ik of the

device for I.

3. Compute required voltage for Ik after gamma

correction.

To speed-up processing, the intensity levels com-

puted for a device are usually kept in a table along

with its bit pattern and gamma corrected voltage

value.The computations in steps 1 and 3 can then

be replaced with table look-ups only.
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Some devices are designed to perform the gamma correction in hardware (SGIs), whereas

in most PCs it has be done through software interface by the user. Consequently, images

generated on one type of display devices may not look the same in the other type.

4.5.3 Halftoning and Dithering

You may have noticed in the previous discussion that the intensity we get on the screen is

not the same as the intensity we calculate with a lighting model. This is so since the calcu-

lated intensity is mapped to the nearest intensity the device supports. In order to generate the

desired image on the screen, we need to keep this difference as small as possible. Otherwise,

the quality of the generated image may be affected.

The desired image quality can be maintained if the device supports large number of

intensity levels. Now consider a bi-level device (each pixel has a single bit to represent its

intensity). Any computed intensity (between 0.0 and 1.0) has to be mapped to either of these

two levels. Clearly, we cannot generate good-quality images with such devices. However, we

can partially overcome this problem with a technique known as halftoning (borrowed from

the printing technology). In halftoning, a rectangular grid of screen pixels are considered

to represent a single pixel of the image. The rectangular pixel grid is called the halftone

approximation pattern or simply the pixel pattern. The total number of intensity levels sup-

ported by each pixel pattern depends on the number of levels supported by each device. Let

us try to understand the concept with an example.

Suppose we have a bi-level device. We define a 2 × 2 pixel pattern on this device. Thus,

4 screen pixels constitute each image pixel. Ordinarily, each screen pixel supports only two

intensity levels (as it is a bi-level device). Let us denote these two levels as ON and OFF.

However, with each pixel pattern (image pixel), we can have 5 intensity levels, as shown

in Fig. 4.12. In Fig. 4.12(a), all screen pixels are in the OFF state. We set one of the four

pixels in ON state (Fig. 4.12(b)-(d)) till we have all four pixels in the ON state (Fig. 4.12(e)).

Hence, we can determine five intensity levels and map them to the five states of the pixel

pattern. Any computed intensity can then be mapped to the nearest of the five intensity lev-

els instead of two. In general, for a bi-level device having an N × N pixel grid, we can have

N2
+ 1 intensity levels.

It is obvious that the halftoning technique, although helps to generate good-quality images

on devices that support few intensity levels, reduces resolution of the image. For a bi-level

device having 512 × 512 screen resolution, application of 2 × 2 halftoning technique

reduces the effective screen resolution to 256 × 256. Another problem with the approach

is that the subgrid patterns become visible as the grid size increases. In other words, we

cannot decide the pixel-grid size arbitrarily. It has to be decided depending on the size of the

OFF OFF

OFF OFF

OFF

OFF OFF OFF OFF

ON ON ON

OFF

ON

ON

ON ON

ON

ON

ON

(a) (b) (c) (d) (e)

Fig. 4.12 The 5 intensity levels generated with the 2 × 2 pixel pattern on a bi-level device
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Floyd–Steinberg error diffusion

1: Input: M[m][n], the matrix of computed intensity values.

2: Output: The same matrix M[m][n] after modifying its elements through error diffusion.

3: for i = 0; i < n; i ++ do

4: for j = 0; i < m; j ++ do

5: e = M[i][j]-nearest intensity value supported by the device.

6: M[i][j+1] += αe. /*α =
7

16
, j 6= m − 1*/

7: M[i+1][j-1] += βe. /*β =
3

16
, i 6= n − 1, j 6= 0*/

8: M[i+1][j] += γ e. /*γ =
5

16
, i 6= n − 1*/

9: M[i+1][j+1] += δe. /*δ =
1

16
, i 6= n − 1, j 6= m − 1*/

10: end for

11: end for

Algorithm 4.3

screen pixels. For low-resolution devices (i.e., fewer screen pixels per centimeter implying

larger pixel size), we have to be satisfied with fewer intensity levels. Otherwise, there may

be distortion in the generated image.

We can approximate halftoning without reducing resolution through dithering techniques.

One such technique is the Floyd–Steinberg error diffusion. Let us assume that we have a

screen with resolution m × n. For each pixel location, we have computed intensity values

with a lighting model. Thus, we have a matrix M (of size m × n) of computed intensity

values. In the approach, we start with the top-left element of M and proceed from left to

right and top to bottom manner. For each element Mij in M (i.e., the jth value in the ith row),

we determine the nearest intensity supported by the device. The difference between these

two intensities is the error term e. We now disperse (diffuse) this error to the neighbouring

pixels as shown in Algorithm 4.3. In this way, we try to minimize the quantization error due

to intensity mapping. Of course, the error at the bottom-right pixel cannot be dispersed.

Let us reconsider Example 4.2. Suppose the screen on which the scene is displayed has 2 bits/pixel.

Each pixel location can emit light with an intensity of atleast 0.05 unit. What would be the intensity

of P2 assuming Gouraud shading?

Solution Each pixel has 2 bits, implying that the device supports 4 intensity levels. As stated in

the problem description, the minimum brightness supported by the device is 0.05 unit We assume

the maximum screen brightness to be 1.0 unit.

Thus, 0.05 × r3
= 1 or r = 20

1
3 = 2.69.

With the value of r, we can determine the four intensity levels as I0 = 0.05, I1 = 0.05×2.69 =

0.1345, I2 = 0.05 × 2.692
= 0.361805 and I4 = 1.0.

Now, the intensity value at P2 computed for Gouraud shading is 0.738 unit (see worked out

example 1). This value is closer to I4. Thus, the intensity for the corresponding pixel will be set as

I4 = 1.0 unit instead of the computed value (0.738).

Example 4.4
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SUMMARY

In this chapter, we have learnt many important and useful concepts. First, we need to

artificially illuminate a scene to generate the 3D effect. Illumination of a scene implies

coloring of the points on the object surfaces. Color of a point, which is a psychologi-

cal phenomenon, is determined by the intensity of the light reflected from the point that

reaches our eye. The reflected intensity has three components: reflection due to ambi-

ent light, diffucse reflection due to direct light source and specular reflection due to direct

light source.

The computation of color at a point is done through the lighting models. We have learnt the

simple lighting model, which makes several simplistic assumptions about the light source and

surface properties. Notable among these are: point light source, a simple ambient light source

that illuminates all surfaces in the same way, ideal diffuse reflection or Lambertian surfaces

and an approximation of the specular effect in terms of a specular reflection coefficient. On the

basis of these assumptions, the model can compute color of a point in the world coordinate in

the presence of single or multiple light source(s). For monochromatic light sources, the model

computes single intensity values whereas for colored light sources, it computes three compo-

nents of the intensity, corresponding to the primary colors red, green and blue. Moreover, by

taking into account the radial and angular intensity attenuation, the model allows us to generate

realistic as well as spotlight effects.

In order to reduce complexities of color computations, shading models are proposed. The

simplest of these is the flat shading, which works well only under some constraints. The lim-

itations of the flat shading are alleviated to a great extent with Gouraud shading, although

the speed of compuation is affected a little. Very realistic images can be generated with

Phong shading, although it is very expensive in terms of computation time and required

resources.

The lighting model computes a real number, which we term as color. We saw in this chap-

ter how this number is mapped to a bit pattern. The mapping involves several stages which

include the determination of the intensity levels for the device (by preserving ratio), assign-

ing bit patterns to each level, mapping the computed intensity to the nearest intensity the

device support and finally, performing the gamma correction. We have also learnt two tech-

niques to reduce errors due to mapping, namely the halftoning and the Floyd-Steinberg error

diffusion.

In the next chapter, we shall get introduced to the concept of color models to learn more

about the way colors are handled in computer graphics. In addition, we shall learn about texture

synthesis to increase the photo-realism of the generated image,which the simple lighting model

in itself is incapable of doing.

A good starting point for further readings on the simple lighting model and shading models

are the original works by Gouraud [1971] and Phong [1975]. A fast implementation of Phong

shading is discussed in Bishop and Wiemer [1986]. More information on lighting and shading

models can be found in Birn [2000] and Akenine-Moller and Haines [2002]. The graphics gems

series of books (Glassner [1990], Arvo [1991], Kirk [1992], Heckbert [1994] and Paeth [1995])

contains implementation algorithms for lighting and shading models. Halftoning methods are

discussed in Velho and Gomes [1991]. Knuth [1987] can be referred for more information on

dithering and error diffusion methods.

BIBLIOGRAPHIC NOTE
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KEY TERMS

Ambient light – light that comes from indirect source (i.e., after reflection from surrounding

surfaces) that illuminates a point

Angular attenuation factor – the effect of reduction of light energy over angular limits

Attenuation factor – mathematical technique to incorporate attenuation in lighting calculations

Color – the intensity of the light that reaches a viewer’s eye and gives rise to the perception of

color

Diffuse reflection – reflection of incident light from a surface in all directions

Dithering – halftoning without reduction of screen resolution

Flat shading – the simplest shading model, in which the same color is assigned to all pixels

belonging to a surface

Floyd–Steinberg error diffusion – one type of dithering technique

Gamma correction – the method used to overcome the problem of non-linear relationship

between the input voltage and the output intensity for a display device

Global lighting model – the model that considers direct as well as indirect (ambient) sources in

color computation

Gouraud shading – a shading model in which color of a pixel belonging to a surface is assigned

after interpolating vertex colors of the surface

Halftoning – displaying more than two intensity levels on a bi-level device

Idea diffuse reflectors/Lambertian reflectors – the surfaces that follow the Lambert’s cosine

law

Illumination – the transport of light energy from a light source to a point

Intensity attenuation – loss of reflected light intensity due to the the distance from the light source

Lambert’s cosine law – the reflected light energy to a direction is proportional to the cosine of

the angle between the surface normal and the reflection direction

Lighting – the process of computing the luminous intensity of the outgoing (reflected) light from

a point

Local lighting model – the model that emphasize on direct light sources for color computation

Mach bands – a psychological phenomena in which we see bright bands when two solid blocks

of colors meet

Opacity – the amount of opaqueness; represented in terms of the opacity factor

Phong model/Phong specular reflection model – an empirical model to compute the specular

reflection component of color

Phong shading – an advanced shading model used for realistic rendering of surfaces

Point light source – a light source that emits light from a point with equal intensity in all

directions

Radial attenuation factor – the effect of reduction of light energy over distance

Reflection coefficient/reflectivity – the surface property that determines the fraction of incident

light that gets reflected

Refraction – the phenomenon of light passing through a surface

Shading/Surface rendering – the process of assigning colors to pixels through interpolation

techniques

Specular reflection exponent – a numerical value to generate different specular effects

Specular reflection – reflection of incident light from a surface in a specific direction

Spotlight – a light source that emits light only in a specific direction in the form of a (conical) light

beam

Translucent surface – surfaces that allow objects behind them to be seen but the objects appear

blurred

Transparency index – the degree of transparency

Transparent surfaces – surfaces that allow objects behind them to be seen
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EXERCISES

4.1 We can simply assign some colors to each of the surfaces in a scene. Then why do we

need the illumination stage in the graphics pipeline?

4.2 Suppose you saw that the pen you use has golden color. How can you explain this

observation?

4.3 We can see color on the surface of an object even if it is not illuminated by a direct light

source. Explain why and how this is possible.

4.4 Derive the simple lighting model for monochromatic single light source without attenuation.

List all the assumptions made in the model.

4.5 Discuss the problem we are likely to face if we do not consider radial intensity attenuation

in the lighting model. Explain how we can implement the spotlight effect with the model.

4.6 How we can extend the simple lighting model to color light sources?

4.7 Discuss the purpose of using shading models. What are the key differences between

shading and lighting models?

4.8 Write the pseudo code for flat shading. Discuss its limitations.

4.9 Derive the iterative Gouraud shading algorithm. What are its limitations?

4.10 Write the pseudo code for the Phong shading. As we can see, the Phong shading requires

huge computations unlike other shading models. What, do you think, is the advantage of

this model?

4.11 Mention the steps involved in transforming a computed intensity value to discrete bit pattern.

4.12 Why do we need gamma correction? How it is done?

4.13 How does halftoning help in image generation? Calculate the number of intensity levels

supported by a 2 × 4 pixel pattern on a 5-level device.

4.14 Discuss the problems with halftoning. Explain one technique to overcome those limitations.

4.15 Consider an object made of two rectangular surfaces ABCD and EFCD. The vertices are

A(0, 0, 2), B(1, 0, 2), C(1, 1, 1), D(0, 1, 1), E(0, 0, 0) and F(1, 0, 0). There is a light source

located at (3/2, 2, 2), emitting light with an intensity of 0.5 unit and the object is being seen

from (5/2,3,3).After projection, the line CD is on the fifth scan line,as shown in Fig.4.13.We

want to display the object on a device having 3 bits/pixel. Each pixel location can emit light

with an intensity of atleast 0.01 unit. Calculate the intensity at P (midway point between

C and D) for the device assuming (a) flat shading and (b) Phong shading. (Assume an

ambient light with intensity of 0.5 unit, ka = kd = ks = 0.5, ns = 100, ignore attenuation).

Y

X

5

1 2 3

D P C

Fig. 4.13 Projected line CD
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5 Color Models

and Texture

Synthesis

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the physiological process behind the perception of color

• Learn about the idea of color representation through the use of color models

• Understand additive color models and learn about RGB and XYZ models

• Understand subtractive color models and learn about the CMY model

• Learn about the HSV color model,which is popularly used in interactive painting/drawing

software applications

• Get an overview of the three texture synthesis techniques-projected texture, texture

mapping, and solid texturing

INTRODUCTION

The fourth stage of the graphics pipeline, namely the coloring of 3D points, has many

aspects. One aspect is the use of the lighting models to compute color values. This has

been discussed in Chapter 4. In the related discussions, we mentioned the basic principle

governing color computation, namely that color of a point is a psychological phenomenon

resulting from the intensities of the reflected light incident on our eyes. In this chapter, we

shall see in some detail what happens inside our eye that gives us a sensation of color. Along

with that, we shall also have a look at different color models, that are essentially alternative

representations of color aimed at simplifying color manipulation. Color models are the sec-

ond aspect of understanding the fourth stage. In addition, we shall have some discussion on

texture synthesis, which acts as an improvement of the simple lighting models to generate

more realistic effects.

5.1 PHYSIOLOGY OF VISION

We came across the fact that color is a psychological phenomenon. The physiology of our

visual system gives rise to this psychological behavior. Figure 5.1 shows a schematic of the

physiology of our visual system, marking the important components.

The light rays incident on the eye pass through the cornea, the pupil, and the lens in that

sequence to finally reach the retina. In between, the rays get refracted (by the cornea and
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Pupil

Iris

Lens
Vitreous

humor

Retina

Central

fovea

Optical

nerve

Cornea

Aqueous

humor Ciliary

muscles
Sclera

Fig. 5.1 Schematic diagram of our visual system

the lens) so as to focus the images on the retina. The amount of light entering the eye is

controlled by the iris (by dilating or constricting the pupil size). The retina is composed of

optical nerve fibres and photoreceptors that are sensitive to light. There are two types of

photoreceptors—rods and cones. The concentration of rods is more in the peripheral region

of the retina, whereas the cones are mainly present in a small central region of the retina

known as the fovea. More than one rod can share an optic nerve. In such cases, the nerve

pools the stimulation by all the connected rods and aids sensitivity to lower levels of light.

In contrast, there are more or less one optic nerve fibre for each cone, which aids in image

resolution or acuity. Vision accomplished mainly with cones is known as photopic vision,

whereas the vision accomplished mainly by rods is called scotopic vision. Only in photopic

vision, we can perceive colors; in scotopic vision, weak lights are visible as a series of grays.

As we know, what we call visible light actually refers to a spectrum of frequencies of

electromagnetic (light) waves. At the one end of the spectrum is the red light (frequency:

4.3×1014 Hz, wavelength: 700 nm) and at the other end is the violet light (frequency: 7.5×

1014 Hz, wavelength: 400 nm). Light waves within this range are able to excite the cones in

our eye, giving the photopic vision (i.e., perception of color). There are three types of cones

present in the eye: L or R, which are most sensitive to the red light; M or G, which are most

sensitive to the green light (wavelength: 560 nm); and S or B, which are most sensitibe to

blue light (wavelength: 430 nm). Perception of color results from the stimulation of all the

three cone types together (thus, this is also referred to as the tristimulus theory of vision).

5.2 COLORMODELS

In computer graphics, we are interested in synthesizing colors so as to create realistic scenes.

The presence of metamers (see the following boxed text) makes this possible in principle.

Metamers imply that we can create any color without actually worrying about the optics
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What is metamerism? How is the idea helpful in computer graphics?

Light incident on our eye is composed of dif-

ferent frequencies (light spectrum). The compo-

nent frequencies excite the three cone types

L, M, and S in different ways, giving us the

sensation of a particular color. However, a par-

ticular color perception can result from differ-

ent spectra. That means, sensation of a color

C resulting from an incident light spectrum S1

can also result from a different light spec-

trum S2. This optical behavior is known as

metamerism and the different spectra that result

in the sensation of the same color are known as

metamers.

Metamers imply that we don’t need to know the

exact physical process behind the perception of a

particular color. Instead, we can always come up

with an artificial way to generate that sensation

(metamers). Thus, it is possible to generate real-

istic scenes artificially, without knowing the actual

optical process.

behind it (how it is perceived in our eye). What we can do is to come up with a set of

basic (or primary) colors. We then mix these colors in appropriate amounts to synthesize

the desired color. This gives rise to the notion of color models (i.e., ways to represent and

manipulate colors).

5.2.1 RGB Color Model

As we saw before, there are three cone types in the retina: L, M, and S. Cones of type L get

excited mostly by red light, M by green light, and S by blue light. Therefore, the incident

light excites these three cones in different ways, which results in the photopic vision (i.e.,

color perception). Therefore, we can think of color as a mixture of the three primary colors:

red, green, and blue. We need to mix the primary colors in appropriate amounts to synthesize

a desired color. This model of color, where we assume that any color is a combination of

the red, green, and blue colors in appropriate amount, is known as the RGB model (see

Fig. 5.2a). This is an additive model in the sense that any color is obtained by adding proper

amounts of red, green, and blue colors.

(a) (b)
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Fig. 5.2 The RGB model. In (a), the basic idea is to illustrate with the primary light waves and the

amount of the light required to generate colors. The 3D cube due to the RGB model is shown in (b).

Color is represented as a point in the cube, corresponding to specific amount of red, green, and blue.
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Since there are three primaries, we can think of a color as a point in a three dimensional

color space. The three axes of the space correspond to the three primary colors. If we are

using the normalized values of the colors (within the range [0, 1]), then we can visualize the

RGB model as a 3D color cube, as shown in Fig. 5.2(b). The cube is the color gamut (i.e., set

of all possible colors) that can be generated by the RGB model. The origin or the absence of

the primaries represent the black color whereas we get the white color when all the primaries

are present in equal amount. The diagonal connecting the black and white colors represents

the shades of gray. The yellow color is produced when only the red and green colors are

added in equal amounts in the absence of blue. Addition of only blue and green in equal

amounts with no red produces cyan, while the addition of red and blue in equal amounts

without green produces magenta.

5.2.2 XYZ Color Model

Although the RGB model is very intuitive owing to its direct correspondence to the tris-

timulus color theory, it has its limitations. For some of the colors in the visible light

spectrum (colors around the 500 nm wavelength, see Fig. 5.2a), the additive model fails.

The colors in this region can not be obtained by adding any amounts of the three pri-

mary colors. In fact, this is a problem for any color model based on naturally occur-

ring primary colors: no model can account for all the colors in the visible spectrum.

In order to overcome this problem, the Commission Internationale de l’Eclairage (CIE)

proposed three hypothetical lightwaves (usually denoted by the letters X, Y, and Z) for

use as primary colors. The idea is, we should be able to generate any wavelength λ in

the visible range by positive combinations of the three primaries, as illustrated in Fig.

5.3. This model is known as the XYZ model due to the name given to the primary

colors.

By definition, the XYZ model is additive. Therefore, any color C can be represented in

the XYZ color space (which is three-dimensional like the RGB color space) as an additive

combination of the primaries using the unit vectors along the axes (corresponding to the
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Fig. 5.3 The figure illustrates the three hypothecial lightwaves designed for the XYZ model

and the amounts in which they should be mixed to produce a color in the visible range.

Compare this figure with Fig. 5.2(a) and notice the difference.
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three primaries), as shown in Eq. 5.1.

C = X X̂ + YŶ + ZẐ (5.1)

For convenience, the amounts X , Y , and Z of the primary colors used to generate C

are represented in normalized forms. Calculations of the normalized forms are shown

in Eq. 5.2.

x =
X

X + Y + Z
(5.2a)

y =
Y

X + Y + Z
(5.2b)

z =
Z

X + Y + Z
(5.2c)

Since x + y + z = 1, we can represent any color by specifying just the x and y

amounts. The normalized x and y are called the chromaticity values. If we plot the chro-

maticity values, we get a tongue-shaped curve as shown in Fig. 5.4. This curve is known

as the CIE chromaticity diagram. The spectral (pure) colors are represented by points

along the curve. However, the line joining the violet and red spectral points, called the
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Fig. 5.4 CIE chromaticity diagram for the visible color spectrum
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Importance of the CIE chromaticity diagram

The CIE chromaticity diagram represents the

whole range of perceptible colors in 2D. As we

have already mentioned, no other set of natu-

ral primaries (representing a color model) can

generate all possible colors. Thus, any sets of pri-

maries (such as red, green, and blue) generates

only a subset of the colors represented by the

CIE chromaticity diagram. Given the x and y val-

ues, we can plot the primaries on the chromaticity

diagram and then join those points using lines

to visualize the color gamut represented by the

set of primaries. In this way, we can visualize and

compare the color gamuts generated by different

models (sets of primaries). Thus, the chromatic-

ity diagram allows us to compare different color

models.As an example, the following figure shows

the RGB color gamut within the chromaticity

diagram.
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480

400
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Orange

600
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Line of p
urples

B

G 550

560

Yellow

580

White point

RGB

color g
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510
Green

purple line, is not part of the spectrum. Interior points in the diagram represent all possi-

ble visible colors. Therefore, the diagram is a 2D representation of the XYZ color gamut.

The point E represents the white-light position (a standard approximation for average

daylight).

5.2.3 CMY Color Model

As we saw before, the RGB color model is additive. That means, a color is generated by

adding appropriate amounts of the primaries red, green, and blue. The video display devices

such as the CRT are designed using this color model. In those devices, each pixel location

contains three dots, each corresponding to one of the primary colors. These dots are excited

individually, resulting in the emission of the corresponding primary lights with appropriate

intensity. When we see it, they appear to represent the color. However, in many hard-copy

devices such as printers and plotters, a different process is used. In such cases, a color picture

is produced by coating a paper with color pigments (inks). When we look at the paper,
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reflected lights from the points containing the pigments comes to our eye giving us the per-

ception of color. This process is, however, not additive. The color perception results from

the subtraction of primaries.

We can form a subtractive color model with the primaries cyan, magenta, and yellow.

Consequently, the model is called the CMY model. The primary cyan is a combination of

blue and green (see Fig. 5.2b). Thus, when white light is reflected from a cyan pigment on a

paper, the reflected light contains these two colors only and the red color is absorbed (sub-

tracted). Similarly, green component is subtracted by the magenta pigment and the primary

yellow subtracts the blue component of the incident light. Therefore, we get the color due to

the subtraction of the red, green, and blue components from the white (reflected) light by the

primaries.

We can depict the CMY model as a color cube in 3D in the same way we did it for the

RGB model. The cube is shown in Fig. 5.5. Note how we can find the location of the cor-

ner points. Clearly origin (absence of the primaries) represents the white light. When all the

primaries are present in equal amounts, we get black color since all the three components of

the white light (red, green, and blue) are absorbed. Thus, the points on the diagonal joining

white and black represents different shades of gray. When only cyan and magenta are present

in equal amount without any yellow color, we get blue because red and green are absorbed.

Similarly, presence of only cyan and yellow in equal amount without any magenta color

results in green and the red color results from the presence of only the yellow and magenta

in equal amounts without cyan.

The CMY model for hardcopy devices is implemented using an arrangement of three ink

dots, much in the same way three phosphor dots are used to implement the RGB model

on a CRT. However, sometimes four ink dots are used instead of three, with the fourth

dot representing black. In such cases, the color model is called the CMYK model with

K being the parameter for black. For black and white or gray-scale images, the black dot

is used.

Magenta (0, 1, 0)

Red (0, 1, 1)

Cyan (1, 0, 0)

Green (1, 0, 1)

Blue (1, 1, 0)

White

(0, 0, 0)

Yellow (0, 0, 1)

Black (1, 1, 1)

Y

X

Z

Fig. 5.5 CMY color cube—Any color within the cube can be described by subtracting the

corresponding primary values from white light
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We can convert the CMY color representation to the RGB representation and vice versa,

through simple subtraction of column vectors. In order to convert CMY representation to

RGB, we use the following subtraction.





C

M

Y



 =





1

1

1



 −





R

G

B





The opposite conversion (from RGB to CMY representation) is done in a likewise manner,

as given here.





R

G

B



 =





1

1

1



 −





C

M

Y





5.2.4 HSV Color Model

If you are using a drawing application, you need some interface to color the pictures you

draw. The interface can be built based on the color models we discussed in the preceding

sections. For example, there can be an interface through which you enter the R, G, and B

values in some format and the system generates the corresponding color using the additive

model. Clearly, this is not very intuitive from a users’ perspective: in order to generate a

color, you need to know the amount of the primary colors.

Artists follow a different approach to color their pictures. In order to generate a specific

color, they first choose a saturated (pure) color (e.g., red, green, blue, yellow, etc.). Next,

they add white to the pure color to decrease saturation. This is known as tint. In order to gen-

erate shades, black is added to the pure color. Both white and black can also be added to the

pure color to generate tones. Thus, any color is generated by the process of tinting, shading,

or toning. From an artist’s (user’s) perspective, this approach is more intuitive than the one

where we need to know the amount of the primary colors required to generate a color.

The intuitive color generation process is replicated with the HSV color model. The

acronym HSV stands for Hue, Saturation, and Value. The color space represented by the

model is the hexcone shown in Fig. 5.6. The pure colors are represented by the boundary

of the hexagon on top. These colors are identified by the hue (H) value, which is the angle

the color make with the axis that connects the white (at the center) and red colors on the

hexagon (white to red is the positive axis direction about which the hue angle is measured).

Thus, red have a hue value of 0 whereas cyan has a value of 180. The saturation (S) value

determines the purity of the color: any color on the boundary has the highest S value of 1.0;

as we move towards the center of the hexcone, the saturation value decreases towards the

minimum (0.0). The parameter value (V) indicates the brightness (intensity) of the color. On

the hexagonal plane, the brightness is the maximum (1.0). As we move towards the apex of

the hexcone, V decreases till it reaches 0.0.

We can relate the operations on the HSV model to that of the intuitive coloring process.

When we are on any cross-sectional plane (same or parallel to the top hexagon) of the hex-

cone (fixed V) and moving from any boundary color (fixed H) towards the center of the
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Green

120°

Cyan
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Black
H

S

Blue

240°

Red
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Yellow

1.0

0.0

White

V

Fig. 5.6 HSV color space. Movement from boundary towards center on the same plane

represents tinting; movement across planes parallel to the V axis represents shading; and

movement across planes from boundary towards center represent toning.

plane, we are reducing S. Reduction in S value is equivalent to the tinting process. Alterna-

tively, when we move from a point on any cross-sectional plane (same or parallel to the top

hexagon) towards the hexcone apex, we are only changing V. This is equivalent to the shad-

ing process. Any other movement (from boundary to the center across planes) in the hexcone

represents the toning process.

5.3 TEXTURE SYNTHESIS

When we apply lighting models to assign colors (or shades of gray), we get objects with

smooth surfaces. However, the surfaces that we see around us contain complex geometric

patterns or textures on top of the surface colors and are usually rough. As an example,

consider the textured surface shown in Fig. 5.7. Such textures or roughness cannot be

synthesized with the lighting model alone. Various techniques are used to make the syn-

thesized surfaces look realistic. In this section, we shall discuss the various texture synthesis

techniques.

Fig. 5.7 A block made from wood. Notice the patterns (texture) on the surface. It is not

posible to generate such patterns with only the lighting model.
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MIPMAP

MIPMAPs are special types of projected texturing method. MIP stands for Multum In Parvo or many

things in a small space. In this technique, a series of texture maps with decreasing resolutions, for the

same texture image, are stored, as illustrated in the following figure.

Original texture

1/4

1/16

1/64
etc

1 pixel

These different maps are used to paste textures

at different places of the surface, so as to get a

realistic effect. The method is useful for imposing

textures on surfaces with perspective projection,

as shown in the following figure. As we can see in

the following figure, the texture on the near part is

synthesized with the largest texture map; smaller

sized maps are subsequently used to synthe-

size textures on the far side. Obviously, MIPMAP

takes more storage space for storing the different

versions of the same texture image.

We can broadly categorize the various texture synthesis techniques into the following

three types1.

1. Projected texture

2. Texture mapping

3. Solid texture

5.3.1 Projected Texture

As we know, a computer screen can be viewed as a 2D array of pixels. The scenes are gener-

ated by assigning appropriate color values to these pixels. Thus we have a 2D array of pixel

values. On the surface, we want to generate a particular texture. What we can do is somehow

create the texture pattern and paste it on the surface.

1The names of the categories, however, are not standard. You may find different names used to denote the

same concepts.
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Texture mapping method

Consider the situation shown in Fig. 5.8. On the left side is a (normalized) texture map defined in

the (u, w) space. This map is to be ‘pasted’ on a 50 × 50 square area in the middle of the object

surface as shown in the right side figure. What are the linear mappings we should use?

w y

x

zu

0

1.0

1.0

100

100

100

Fig. 5.8

Solution As we can see, the target surface is a square of side 100 units, on a plane parallel to the

XY plane. Therefore, the parametric representation of the target area (middle of the square) is,

x = θ with 25 ≤ θ ≤ 75

y = φ with 25 ≤ φ ≤ 75

z = 100

Now let us consider the relationships between the parameters in the two spaces with respect to the

corner points.

The point u = 0, w = 0 in the texture space is mapped to the point θ = 25, φ = 25.

The point u = 1, w = 0 in the texture space is mapped to the point θ = 75, φ = 25.

The point u = 0, w = 1 in the texture space is mapped to the point θ = 25, φ = 75.

The point u = 1, w = 1 in the texture space is mapped to the point θ = 75, φ = 75.

We can substitute these values into the linear mappings θ = Au + B, φ = Cw + D to determine

the constant values. The values thus determined are: A = 50, B = 25, C = 50, and D = 25 (left as

an exercise for the reader). Therefore, the mappings we can use to synthesize the particular texture

on the specified target area on the cube surface are θ = 50u + 25, φ = 50w + 25.

Example 5.1

This idea is implemented in the projected texture method. We create a texture image, also

known as texture map from synthesized or scanned images. The map is a 2D array of color

values. Each value is called a texel. There is a one-to-one correspondance between the texel

array and the pixel array. We now replace the pixel color values with the corresponding texel

values to mimic the ‘pasting of the texture on the surface’. The replacement can be done in

one of the following three ways.
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1. We can replace the pixel color value on a surface point with the corresponding texel value.

This is the simplest of all.

2. Another way is to blend the pixel and texel values. Let C be the color after blending the

pixel value Cpixel and the texel value Ctexel. Then, we can use the following equation for

smooth blending of the two: C = (1 − k)Cpixel + kCtexel where 0 ≤ k ≤ 1.

3. Sometimes a third approach is used in which we perform a logical operation (AND, OR)

between the two values (pixel and texel) represented as bit strings. The outcome of the

logical operation is the color of the surface point.

Projected texture method is suitable when the target surfaces are relatively flat and facing

the reference plane (roughly related to the screen, as we shall see later). However, for curved

surfaces, it is not very useful and we require some other method, as discused in the next

section.

5.3.2 Texture Mapping

On a curved surface, simple pasting of pre-synthesized texture patterns does not work. We

go for a more general definition of the texture map. Now, we asume the texture map to be

defined in a 2D texture space, whose principle axes are typically denoted by the letters u

and w. The object surface is represented in parametric form, usually denoted by the symbols

θ and φ. Two mappings are then defined from the texture space to the object space as:

θ = f (u, w), φ = g(u, w).

In the simplest case, the mapping functions are assumed to be linear. Therefore, we can

write: θ = Au + B, φ = Cw + D. A, B, C, and D are constants, whose values can be

determined from the relationships between known points in the two spaces (for example, the

corner points of the texture map and the corresponding surface points as illustrated in the

example).

5.3.3 Solid Texture

While texture mapping is useful to deal with curved surfaces, it is still difficult to use in many

situations. In texture mapping, we need to define the mapping between the two spaces. How-

ever, for complex surfaces, it is difficult to determine the mapping. Also in situations where

there should be some ‘continuity’ of the texture between adjacent surfaces (see Fig. 5.9),

the methods we discused so far are not suitable. In such cases, we use the solid texturing

method.

In this method, a texture is defined in a 3D texture space (note that in the previous meth-

ods, texture maps were defined in 2D), whose principle axes are usually denoted by the

letters u, v, and w. When rendering an object, the object is placed in the texture space

through transformations. Thus a point P(x,y,z) on the object surface is tranformed to a point

P′(u,v,w) in the texture space. The color value associated with P′ is then used to color the

corresponding surface point.
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Fig. 5.9 An example situation where solid texturing method is required. The white lines

show the surface boundaries. Note the continuation of the texture patterns across adjacent

surfaces.

SUMMARY

In this chapter,we have discussed the fundamental idea behind the sensation of color, through a

brief discussion on the physiology of vision. We learnt that the three cone type photoreceptors

are primarily responsible for our perception of color, which gives rise to the Tristimulus theory

of color. We also learnt that the existence of metamers, which are the various spectra related

to the generation of a color, makes it possible to synthesize colors artificially, without mimicking

the exact natural process.

Next, we discussed about the idea of representing colors through the color models. These

models typically use a combination of three primary colors to represent any arbitrary color. Two

types of combinations are used in practice: additive and subtractive. We discussed two additive

color models, namely the RGB and the XYZ models. The CMY model is discussed to illustrate

the idea of the subtractive model. Finally, we discussed the HSV model, which is primarily used

to design user interfaces for interactive painting/drawing applications.

The third topic we learnt about in this chapter is synthesis of textures/patterns on a surface,to

make the surfaces look realistic.Three types of textures synthesis techniques are introduced. In

the projected texture method,a texture pattern (obtained from a synthesized or scanned image)

is imposed on a surface through the use of blending functions. In the texture mapping technique,

a texture map/pattern defined in a two-dimensional space is mapped to the object space. The

solid texturing method extends the texture mapping idea to three dimensions, in which a 3D

texture pattern is mapped to object surfaces in three dimensions.

Once the coloring is done, we transform the scene defined in the world coordinate system

to the eye/camera coordinate system. This transformation, known as the view transformation,

is the fourth stage of the 3D graphics pipeline, which we shall learn in Chapter 6.

More discussion on human visual system and our perception of light and color can be found

in Glassner [1995]. Wyszecki and Stiles [1982] contains further details on the science of color.

Color models and its application to computer graphics are described in Durrett [1987], Hall

[1989] and Travis [1991]. Algorithm for various color applications are presented in the com-

puter gems series of books (Glassner [1990], Arvo [1991], Kirk [1992], Heckbert [1994] and

Paeth [1995]). More on texture-mapping can be found in Demers [2002].

BIBLIOGRAPHIC NOTE
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KEY TERMS

Additive model – a color model that represents arbitrary colors as a sum (addition) of primary

colors

CIE chromaticity diagram – the range of all possible colors in two-dimension

CMY color model – a subtractive color model in which the cyan, magenta, and yellow are the

primary colors

Color gamut – the set of all possible colors that can be represented by a color model

Color models – the ways to represent and manipulate colors

Cones – one type of photoreceptors that help in image resolution or acuity

HSV color model – a color model typically used to design the user interfaces in painting

applications

Metamerism – the phenomenon that color perception can result from different spectra

Metamers – different spectra that gives rise to the perception of the same color

MIPMAP – Multum In Parvo Mapping, which is a special type of projected texturing technique

Photoreceptors – the parts of the eye that are sensitive to light

Primary colors – the basic set of colors in any color model, which are combined together to

represent arbitrary colors

Projected texture – the technique to synthesize texture on a surface by blending the surface color

with the texture color

RGB color model – an additive color model in which the red, green, and blue colors are the three

primary colors

Rods – one type of photoreceptors that are sensitive to lower levels of light

Solid texturing – the texture mapping technique applied in three-dimension

Subtractive model – a color model that represents arbitrary colors as a difference (subtraction)

of primary colors

Texel – the color of each pixel in the texture map grid

Texture image/texture map – a grid of color values obtained from a synthesized/scanned image

Texture mapping – the technique to synthesize texture on a surface by mapping a texture defined

in the texture space to the object space

Tristimulus theory of vision – the theory that color perception results from the activation of the

three cone types together

Visible light – a spectrum of frequencies of the electromagnetic light wave (between 400 nm to

700 nm wavelength)

XYZ color model – an additive standardized color model in which there are three hypothetical

primary colors denoted by the letters X, Y, and Z.

EXERCISES

5.1 Explain the process by which we sense colors.

5.2 It is not possible to exactly mimic the lighting process that occurs in nature. If so, how does

computer graphics work?

5.3 What is the basis for developing models with three primary colors such as RGB?

5.4 Discuss the limitation of the RGB model that is overcome with the XYZ model.

5.5 Briefly discuss the relationship between the RGB and the CMY models. When is the CMY

model useful?

5.6 Explain the significance of using the HSV model instead of the RGB or CMY models.

5.7 Mention the three broad texture synthesis techniques.

5.8 Explain the key idea of the projected texture method. How are the texels and pixels

combined?

5.9 Explain the concept of MIPMAP. How is it different from projected texture methods?
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5.10 Discuss how texture mapping works. In what respect is it different from projected texture

methods? When do we need it?

5.11 Discuss the basic idea behind solid texturing. When do we use it?

5.12 Consider a cube ABCDEFGH with side length 8 units;E is at origin,EFGH on the XY plane,

AEHD on the YZ plane and BFEA on the XZ plane (defined in a right-handed coordinate

system). The scene is illuminated with an ambient light with an intensity of 0.25 units and

a light source at location (0,0,10) with an intensity of 0.25 unit. An observer is present at

(5,5,10). Assume ka = kd = ks = 0.25 and ns = 10 for the surfaces. We want to render

a top view of the cube on the XY plane. A texture map is defined in the uw space as a

circle with center at (1.0,1.0) and radius 1.0 unit. Any point p (u,w) within this circle has

intensity
u

u+w . We need to map this texture on a circular region of radius 3 units in the mid-

dle of the top of the cube. What would be the color of the points P1(4,2,8) and P2(3,1,8),

assuming Gouraud shading (ignore attenuation)? [Hint: See Example 4.1 in Chapter 4 and

Example 5.1].
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6 3D Viewing

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the 3D viewing transformation stage and its importance in computer

graphics

• Set-up the 3D viewing coordinate reference frame

• Understand the mapping from the world coordinate frame to the viewing coordinate

frame

• Get an overview of the parallel and perspective projections with subcategories

• Learn to perform parallel projection of a 3D scene in the view coordinate frame to the

view plane

• Learn to perform perspective projection of a 3D scene in the view coordinate frame to

the view plane

• Understand the concept of canonical view volumes

• Learn to map objects from clipping window to viewport

INTRODUCTION

Let us recollect what we have learnt so far. First, we saw how to represent objects of varying

complexities in a scene (Chapter 2). Then, we saw how to put those objects together through

modeling transformations (Chapter 3). Once the objects are put together to synthesize the

scene in the world coordinate system, we learnt how to apply colors to make the scene real-

istic (Chapters 4 and 5). All these discussions up to this point, therefore, equipped us to

synthesize a realistic 3D scene in the world coordinate system. When we show an image on

a screen, however, we are basically showing a projection of a portion of the 3D scene.

The process is similar to that of taking a photograph. The photo that we see is basically a

projected image of a portion of the 3D world we live in. In computer graphics, this process

is simulated with a set of stages. The very first of these stages is to transform the 3D world

coordinate scene to a 3D view coordinate system (also known as the eye or camera coordi-

nate system). This process is generally known as the 3D viewing transformation. Once this

transformation is done, we then project the transformed scene onto the view plane. From the

view plane, the objects are projected onto a viewport in the device coordinate system. In this
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chapter, we shall discuss about the 3D viewing, projection, and viewport transformation

stages.

6.1 3D VIEWING TRANSFORMATION

Let us go back to our photograph analogy and try the understand the process in a little more

detail. What is the first thing we do? We point our camera to a particular direction with a

specific orientation, so as to capture the desired part of the scene. Then, we set our focus

and finally click the picture. Focusing is the most important part here. Through this mech-

anism, we get to know (or at least estimate) the quality and coverage of the picture taken.

To set focus, we look-at the scene through the viewing mechanism provided in the camera.

Note the difference: instead of looking at the scene directly, we are looking at it through the

camera. In the former case, we are looking at the scene in its world coordinate system. In

the latter case, we are looking at a different scene, one that is changed by the arrangement

of lenses in the camera, to aid us in our estimation. Therefore, in taking a photograph with

a camera, we actually change or transform the 3D world coordinate scene to a description

(in another coordinate system) characterized by the camera parameters (position and orien-

tation). The latter coordinate system is generally called the view coordinate system and the

transformation is known as the viewing transformation.

In order to simulate the viewing transformation in computer graphics, we need two things.

First, we need to define the view coordinate system and then, we perform the transformation.

Let us first see how we can define (or setup) the view coordinate system.

6.1.1 Setting up a View Coordinate System

The process that we are trying to simulate is visualized in Fig. 6.1. Note the three axes

xview, yview, and zview orthogonal to each other. These three are the basis vectors essentially

defining the view coordinate system.

Although we have used the common notation (x, y, and z) in Fig. 6.1 to denote the three

basis vectors of the view coordinate system, they are usually denoted by the three vectors Eu,

Ev, and En. In the subsequent discussion, we shall use the latter notation.

Yworld

Xworld

Xview

Yview

Zview

Zworld

Object

Camera

Fig. 6.1 Visualization of the view coordinate system, defined by the mutually orthogonal

xview, yview , and zview axes. The xworld, yworld , and zworld axes define the world coordinate

system.
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View-up vector

View plane

View-up

point

Look-at point

Camera position

World coordinate

origin

u

n

Fig. 6.2 Illustration of the determination of the three basis vectors for the view coordinate

system

How do we set-up the view coordinate system. The first thing is to determine the ori-

gin, where the three axes meet. This is easy. We assume that the camera is represented

as a point in the 3D world coordinate system. We simply choose this point as our origin

(denoted by Eo). However, determining the vectors Eu, Ev, and En that meet at this origin is

tricky.

When we try to bring something into focus with our camera, the first thing we do is to

choose a point (in the world coordinate). This is the center of interest or the look-at point

(denoted by Ep). Then, using simple vector algebra, we can see that En = Eo − Ep, as depicted in

Fig. 6.2. Finally, we normalize En as n̂ =
En

|En|
to get the unit basis vector.

Next, we specify an arbitrary point (denoted by Epup) along the direction of our head while

looking through the camera. This is the view-up direction. With this point, we determine the

view-up vector EVup = Epup − Eo (see Fig. 6.2). Then, we get the unit basis vector v̂ =

EVup

| EVup|
.

We know that the unit basis vector û is perpendicular to the plane spanned by n̂ and

v̂ (see Fig. 6.2). Hence, û = v̂ × n̂ (i.e., the vector cross-product assuming a right-

handed coordinate system). Since both n̂ and v̂ are unit vectors, we do not need any further

normalization.

Consider Fig. 6.3. We are looking at the square object with vertices A(2,1,0), B(2,3,0), C(2,3,3)

and D(2,1,3). The camera is located at the point (1,2,2) and the look-at point is the cen-

ter of the object (2,2,2). The up direction is parallel to the positive z direction. What is

the coordinate of the center of the object, after its transformation to the viewing coordinate

system?

Solution First, we determine the three unit basis vectors for the viewing coordinate system.

Example 6.1
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Y

X

Z

C(2, 3, 3)

D(2, 1, 3)

B(2, 3, 0)

(2, 2, 2)

(1, 2, 2) A(2, 1, 0)

Fig. 6.3

The camera position Eo is (1,2,2) and the look-at point is (2,2,2). Therefore En = Eo − Ep

= (−1, 0, 0) = n̂.

Since it is already mentioned that the up direction is parallel to the positive z direction, we can

directly determine that v̂ = (0, 0, 1) without any further calculations. Note that this is another way

of specifying the up vector (instead of specifying a point in the up direction and computing the

vector).

Finally, the cross product of the two vectors (i.e., v̂ × n̂) gives us û = (0, 1, 0).

After the three basis vectors are determined, we compute the transformation matrix Mw2v which

is a composition of translation and rotation (i.e., Tw2v = R.T).

Since the camera position is (1,2,2), we have

T =









1 0 0 −1

1 0 0 −2

1 0 0 −2

0 0 0 1









From the unit basis vectors that we have already derived [i.e., n̂(−1, 0, 0), û(0, 1, 0), v̂(0, 0, 1)],

we have

R =









0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 1









Therefore,

Mw2v = R.T =









0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 1

















1 0 0 −1

1 0 0 −2

1 0 0 −2

0 0 0 1









=









1 0 0 −2

1 0 0 −2

−1 0 0 1

0 0 0 1








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Thus, the new coordinates of the object center (2,2,2) is,

C′
= Mw2vC =









1 0 0 −2

1 0 0 −2

−1 0 0 1

0 0 0 1

















2

2

2

1









=









0

0

−1

1









In other words, the object center gets transformed to the point (0,0,−1) in the view coordinate

system.

Determination of the viewing coordinate system

We are given the camera parameters:

1. Camera position (origin of the coordinate) Eo

2. View-up point Epup

3. Center of interest or the look-at point Ep

From these parameters, the three unit basis vec-

tors are determined as follows.

1. Determine n̂ (unit basis vector opposite to the

looking direction): En = Eo − Ep; n̂ =
En

|En|
2. Determine v̂ (unit basis vector along the view-

up direction): EVup = Epup − Eo; v̂ =

EVup

| EVup|

3. Determine û (the third unit basis vector): û =

v̂ × n̂

6.1.2 Viewing Transformation

Once we set up the coordinate system, the next task is to transform the scene description

from the world coordinate to the view coordinate system. In order to understand the process,

let us consider Fig. 6.4. The point P is an arbitrary point in the world coordinate, which we

need to transform to the view coordinate. Assume that the view coordinate origin (the cam-

era position) has the coordinates (ovx, ovy, ovz) and the three basis vectors are represented

as û(ux, uy, uz), v̂(vx, vy, vz), and n̂(nx, ny, nz). We have to set up the transformation matrix

View plane

Camera position

World coordinate

origin

u

v

P

n

Fig. 6.4 Visualization of the transformation process. P is any arbitrary point, which has to

be transformed to the view coordinate system. This requires translation and rotation.
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How can we generate different 3D viewing effects?

We have learnt about the process of tranform-

ing a world coordinate description to the view

coordinate. There are several quantities involved

in this process. By manipulating one or more of

these quantities, we can generate different view-

ing effect.

1. If we wish to generate a composite display con-

sisting of multiple views from a fixed camera

position,we can keep the camera position fixed

but systematically change the basis vector n̂

(by choosing different look-at points).

2. We can keep n̂ fixed but change the camera

position (hypothetically by moving it along n̂)

in order to generate panning effects seen in

animations.

3. In order to view an object from different posi-

tions,we can move the camera position around

the object (note that n̂ also changes).

Mw2v, which, when multiplied to P, gives the transformed point P′ in the view coordinate

system (i.e., P′
= Mw2v.P).

In order to do so, we need to find out the sequence of transformations required to align

the two coordinate systems. We can achieve this by two operations: translation and rotation.

We first translate the view coordinate origin to the world coordinate origin. The necessary

translation matrix T is (in homogeneous form),

T =









1 0 0 −ovx

1 0 0 −ovy

1 0 0 −ovz

0 0 0 1









Then, we rotate the view coordinate frame to align it with the world coordinate frame.

The rotation matrix R is (in homogeneous form),

R =









ux uy uz 0

vx vy vz 0

nx ny nz 0

0 0 0 1









This sequence is then applied in reverse order on P. Thus, we get Mw2v = R.T . Hence,

P′
= (R.T)P.

6.2 PROJECTION

When we see an image on a screen, it is two-dimensional (2D). The scene in the view coor-

dinate system, on the other hand, is three-dimensional (3D). Therefore, we need a way to

transform a 3D scene to a 2D image. The technique to do that is projection. In general, pro-

jection allows us to transform objects from n dimensions to (n − 1) dimensions. However,

we shall restrict our discussion on projections from 3D to 2D.

In computer graphics, we project the 3D objects onto the 2D view plane (see Fig. 6.2). In

order to do that, we define an area (usually rectangular) on the view plane that contains the

projected objects. This area is known as the clipping window. We also define a 3D volume
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in the scene, known as the view volume. Objects that lie inside this volume are projected on

the clipping window. Other objects are discarded (through the clipping process that we shall

discuss in Chapter 7). Note that the entire scene is not projected; instead, only a portion of

it enclosed by the view volume is projected. This approach gives us flexibility to synthesize

images as we want. The trick lies in choosing an appropriate view volume, for which we

require an understanding of the different types of projections.

6.2.1 Types of Projections

The basic idea of projection is as follows: we want to project a 3D object on a 2D view

plane. From each point on the object, we generate straight lines towards the view plane.

These lines are known as projectors. These lines intersect the view plane. The intersection

points together give us the projected image.

Depending on the nature of the projectors, projections can be broadly classified into two

types: parallel and perspective. In parallel projection, the projectors are parallel to each

other. This is not the case in perspective projection, in which the projectors are not parallel

and converge to a center of projection. The idea is illustrated in Fig. 6.5. Note that the center

of projection is at infinity for parallel projection.

Object

Point of projection

View plane

Projection

Projection

Direction of projection

Projectors

View plane

Object

(a)

(b)

Fig. 6.5 Two types of projection (a) Parallel (b) Perspective
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(b)(a) (c)

View plane
View plane

View plane

Vanishing pointsCenter of

projection

Center of 

projection

Object after

 projection

A′

C′ C A

DD′

B′

B

A

A′

B

B′

Fig. 6.6 The different types of anomalies associated with perspective projection. Foreshortening is

depicted in (a). Note the projected points (A
′
,B

′
) for object AB and (C

′
,D

′
) for object CD, although both

are of the same size. In (b), the concept of vanishing points is illustrated. View confusion is illustrated

in (c).

Since the projectors converge at a point, perspective projection gives rise to several

anomalies (i.e., the appearance of the object in terms of shape and size gets changed).

Perspective foreshortening If two objects of the same size are placed at different distances

from the view plane, the distant object appears smaller than the near objects (see Fig. 6.6(a)).

Vanishing points Lines that are not parallel to the view plane appear to meet at some point

on the view plane after projection. The point is called vanishing point (see Fig. 6.6(b)).

View confusion If the view plane is behind the center of projection, objects in front of the

center of projection appear upside down on the view plane after projection (see Fig. 6.6(c)).

As you can see, the anomalies actually help in generating realistic images since this is the

way we perceive objects in the real world. In contrast, the shape and size of objects are

preserved in parallel projection. Consequently, such projections are not used to generate

Projections

Parallel Perspective

Three-point

Two-point

Oblique

Cavalier Cabinet

Multi-view Axonometric

Dimetric TrimetricIsometric

Orthographic

One-point

Fig. 6.7 Taxonomy of different projection types
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realistic scenarios (such as in computer games or animations). Instead, they are more useful

for graphics systems that deal with engineering drawings (such as CAD packages).

Although we have mentioned two broad categories of projection, there are many sub-

categories under parallel and perspective projection. The complete taxonomy of projections

is shown in Fig. 6.7.

When projectors are perpendicular to the view plane, the resulting projection is called

orthographic. There are broadly two types of orthographic projections. In multiview ortho-

graphic projection, principle object surfaces are parallel to the view plane. Three types of

principle surfaces are defined: top (resulting in top view), front (resulting in front view), and

side (resulting in side view). The three views are illustrated in Fig. 6.8.

In contrast, no principal surface (top, front, or side) is parallel to the view plane in

axonometric orthographic projection. Instead, they are at certain angles with the view plane

(see Fig. 6.9). Note that the principal faces can make three angles with the view plane as

Top  view

Front view

Side view
The object

Fig. 6.8 Three types (top, side, and front view) of multiview orthographic projections

Axonometric

view

View plane

Angle b

Principle

surfacePrinciple

surface

Angle a

Angle q

Fig. 6.9 Axonometric orthographic projection where principal surfaces are at certain angles

with the view plane
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illustrated in Fig. 6.9. Depending on how many of these angles are equal to each other, three

types of axonometric projections are defined: isometric, when all the three angles are equal

to each other; dimetric, when two of the three angles are equal to each other; and trimetric,

when none of the angles is equal to the other.

When the projectors are not perpendicular to the view plane (but parallel to each other),

we get oblique parallel projection, as illustrated in Fig. 6.10. In oblique projection, if lines

Object

Projectors

View plane

Fig. 6.10 Oblique parallel projection where projectors are not perpendicular to the view

plane

VP

VP VP

VP

VP VP

VP - Vanshing point

(a)

(b)

(c)

Fig. 6.11 Three types of perspective projections, depending on the number of vanishing

points (a) One-point (b) Two-point (c) Three-point
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perpendicular to the view plane are foreshortened by half after projection, it is known as

cabinet projection. When there is no change in the perpendicular lines after projection, it is

called cavalier projection.

Recall that in perspective projection, we have the idea of vanishing points. These are

basically perceived points of convergence of lines that are not parallel to the view plane.

Depending on the orientation of the object with respect to the view plane, we can have

between one to three vanishing points in the projected figure. Depending on the number of

vanishing points, we define perspective projections as one-point (see Fig. 6.11a), two-point

(see Fig. 6.11b) or three-point (see Fig. 6.11c).

In the next section, we shall outline the fundamental concepts involved in computing

projected points on the view plane. However, we shall restrict our discussion to the two

broad classes of projections. Details regarding the individual projections under these broad

classes will not be discussed, as such details are not necessary for our basic understanding

of projection. In all subsequent discussions, the term parallel projection will be used to refer

to parallel orthographic projections only.

6.2.2 Projection Transformation

Let us come back to our camera analogy. What we capture on film is 2D, after projection

of the objects on the film plane (view plane). The same idea is implemented in computer

graphics. After the objects are transformed to the view coordinate system, those are pro-

jected on the view plane. This is achieved through the projection transformations. Similar

to all the other transformations we have encountered so far (modeling and view transforma-

tions), projection transformations are also performed with matrix multiplication (between

the coordinate vectors and the projective transformation matrices). In this section, we shall

see how the matrices are derived.

Recall that projection requires us to define a view volume, which is the region in the 3D

view coordinate system that encloses all the objects to be projected. The shape of the view

volume depends on the type of projection we want. For parallel projection, the view volume

takes the shape of a rectangular parallelepipe as shown in Fig. 6.12(a). The shape is defined

by its six planes (near, far, top, bottom, right and left). The near plane is the view plane on

which the clipping window is present. A frustum is used to represent the view volume for

perspective projection, as shown in Fig. 6.12(b), defined by the six planes.

In terms of the view volumes, let us try to understand the derivation of the projection

matrices. We begin with parallel projection. Consider Fig. 6.13. The point P is in the view

volume with coordinate (x, y, z). It is projected as the point P′ (x′, y′, z′) on the clipping win-

dow. Assuming that the near plane is at a distance d along the −z direction, the coordinate

of P′ can be derived simply as x′ = x, y′ = y and z′ = −d.

Therefore, the transformation matrix for parallel projection is,

Tpar =









1 0 0 0

0 1 0 0

0 0 0 −d

0 0 0 1








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(a)

Left

X

Y

Z

Top

Far

Bottom

Right

Near

View coordinate

origin

(Clipping window)

(b)

Left

X

Y

Z

Top

Far

Bottom

Right

Near

(Clipping window)

Center of projection

Fig. 6.12 The shape of the view volumes for the two basic projection types. The paral-

lelepipe in (a) is used for parallel projection and the frustum in (b) is used for perspective

projection.

X

Y

Z

Near

d

(Clipping window)

P′(X′, Y′, Z′) P(X, Y, Z)

Fig. 6.13 Illustration for derivation of the transformation matrix for parallel projection

Hence, in terms of matrix multiplication, we can write,

P′′









x′′

y′′

z′′

w









= TparP =









1 0 0 0

0 1 0 0

0 0 0 −d

0 0 0 1

















x

y

z

1









Note that the multiplication is performed in homogeneous coordinate system. Therefore,

the real coordinates of P′ are x′ =
x′′

w
, y′ =

y′′

w
, and z′ =

z′′

w
.

Obviously, derivation of the transformation matrix for perspective projection involves a

little more calculation. Consider Fig. 6.14, which shows a side view seen along the −x

direction. We need to derive the transformation matrix that projects the point P (x, y, z) to

the P′(x′, y′, z′).

The original and the projected points are part of two similar triangles. As a result, we

can say
y

y′
=

−z

−d
or y′ = y

d

z
. In a similar way, we can derive the projected x coordinate
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X

Y

Z

P(X, Y, Z)

Near
d

(Clipping window)

P′(X ′, Y ′, Z ′)

Center of projection

Fig. 6.14 Illustration for the derivation of the transformation matrix for perspective projection

x′ as x′ = x
d

z
. It is obvious that z′ = −d. We can use these expressions to construct the

transformation matrix in homogeneous coordinate form as,

Tpsp =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0
1

d
0











Finally, in terms of matrix multiplication, we can write,

P′′









x′′

y′′

z′′

w









= TpspP =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0
1

d
0



















x

y

z

1









As in the case of parallel projection, we need to compute the coordinates of the projected

point as x′ =
x′′

w
, y′ =

y′′

w
, and z′ =

z′′

w
, since the transformation matrix is in homogeneous

form.

What would be the coordinates of the object center in Example 6.1 on a view plane z = −0.5, if

we want to synthesize images of the scene for parallel projection. Assume that the view volume is

sufficiently large to encompass the whole transformed object.

Solution The coordinates of the point in the view coordinate system is (0, 0,−1). We also know

that the transformation matrix for parallel projection

Tpar =









1 0 0 0

0 1 0 0

0 0 0 −0.5

0 0 0 1









.

Example 6.2
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Hence, the coordinates of the point after projection will be,

TparP =









1 0 0 0

0 1 0 0

0 0 0 −0.5

0 0 0 1

















0

0

−1

1









=









0

0

−0.5

1









In other words, the point will be projected to (0,0,−0.5) on the view plane.

What would happen to the point if we perform a perspective projection on the view plane z = −0.5

with the view coordinate origin to be the center of projection. Assume that the view volume is

sufficiently large to encompass the whole transformed object.

Solution We proceed as before. The transformation matrix for perspective projection

Tpsp =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0
1

0.5
0











.

The point before projection is at (0,0,−1). The new coordinate of the point after projection will be,

TpspP =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0
1

0.5
0



















0

0

−1

1









=









0

0

1

−2









The derived point is in homogeneous form as before. However, we have −2 as the homogeneous

factor. Thus, the projected point is

(

0

−2
,

0

−2
,

1

−2

)

. In other words, the point will be projected to

(0,0,−0.5) on the view plane.

Example 6.3

6.2.3 Canonical View Volume and Depth Preservation

An important stage in the graphics pipeline is clipping, which we shall discuss in Chap-

ter 7. The objective of this stage is to remove all the objects that lie outside the view

volume. As we shall see, such removal often requires lots of calculation to determine

object surface-view volume boundary intersection points. If such intersection calculations

are to be performed with respect to any arbitrary view volume, computation time may

increase significantly. Instead, what we can do is to define the clipping procedures with
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respect to a standard view volume. This standard volume is known as the canonical view

volume (CVV).

Figure 6.15 shows the CVV for parallel projection. Note that the CVV is a cube within

the range [−1,1] along the x, y, and z directions1. As you can see, any arbitrary view vol-

ume can be transformed to the CVV using the scaling operations along the three axial

directions.

Canonical view volume for perspective projection is a little tricky. For ease of clipping

computations, perspective view frustums are also transformed to parallel CVV (i.e., the

cube within the range [−1,1] along the x, y, and z directions). Clearly, this transforma-

tion is not as straightforward as in the case of parallel projection and involves composition

of two types of modeling transformations: shearing and scaling. The idea is illustrated

in Fig. 6.16.

With the idea of CVV, let us now try to understand the sequence of transformations that

take place when a point P in the world coordinate is projected on the view plane. First, it

gets transformed to the view coordinate system. Next, the view volume in which the point

lies is transformed to CVV. Finally, the point in the CVV is projected. In matrix notation,

we can write this series of steps as: P′
= Tproj.Tcvv.TVCP, where Tproj is the projection

transformation matrix, Tcvv is the matrix for transformation to the canonical view volume

and TVC is the matrix for transformation to the view coordinate.

Xmax, Ymax, −far 

Xmin, Ymin, −near

1, 1, −1

−1, −1, 1

CVV
Arbitrary view volume

Fig. 6.15 Canonical view volume for parallel projection

1, 1, −1

−1, −1, 1

CVVArbitrary view frustum

X

Y

Z

Fig. 6.16 The canonical view volume for perspective projection.Note that the frustum should

be sheared along x and y directions and scaled along z direction to obtain the CVV.

1Another variation is also used for parallel projection in which the CVV is a unit cube that lies within the

range [0,1] along each of the three axial directions.
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There is one more thing that we need to remember in projection. We mentioned

that in projection, 3D points are mapped to 2D. This is achieved by removing the z

(depth) component of the points. However, in the implementation of graphics pipeline,

the depth component is not removed. In other words, while computing the transformed

coordinates of a point, its original z (depth) value is preserved in a separate stor-

age known as the z(depth)-buffer. The depth information is required to perform a later

stage of the graphics pipeline, namely hidden surface removal, which we shall discuss

in Chapter 8.

6.3 WINDOW-TO-VIEWPORT TRANSFORMATION

So far, we have discussed the steps involved in transforming a point in the world coordinate

to the clipping window on the view plane. Note that the clipping window is the near plane of

the canonical view volume (see Fig. 6.15). For the ease of computations, it is assumed that

the window is at zero depth (i.e., z = 0). Moreover, since the x and y extents of the window

are fixed [between −1 to 1], the coordinates of the points in the window have a fixed range,

irrespective of their actual position in the world coordinate. For this reason, the clipping

window on the CVV is often called the normalized window.

Clipping window is an abstract and intermediate concept in the process of image syn-

thesis. The points on the clipping window constitute the objects that we want to show

on the screen. However, the scene may or may not occupy the whole screen. The idea

is illustrated in Fig. 6.17, in which the content of the clipping window is displayed

on a portion of the screen. Hence, we should distinguish between the following two

concepts.

Window This is the same as (normalized) clipping window. The world coordinate objects

that we want to display are projected on this window.

Viewport The objects projected on the window may be displayed on the whole screen or

a portion of it. The rectangular region on the screen, on which the content of the window is

rendered, is known as the viewport.

Window

Objects in world coordinate

Viewport

Device

space

Fig. 6.17 The difference between window and viewport. Window contains the objects to be

displayed (left figure). Viewport is the region on the screen, where the window contents are

displayed (right figure).



i

i

“Chapter-6” — 2015/9/15 — 15:33 — page 125 — #17
i

i

i

i

i

i

3D Viewing 125

Window Viewport

Wy2

Wx, Wy

Wy1

Wx1 Wx2

Vy2

Vx, Vy

Vy1

Vx1 Vx2

Fig. 6.18 Window-to-viewport mapping. Note that the window coordinates are generalized

in the illustration instead of the normalized coordinates.

Note that the viewport is defined in the device space. In other words, it is defined with

respect to the screen origin and dimensions. So, one more transformation is required to

transfer points from the window (in the view coordinate system) to the viewport (in the

device coordinate system). Let us try to understand the derivation of the transformation

matrix.

Consider Fig. 6.18. The point (Wx, Wy) in the window is transformed to the viewport

point (Vx, Vy). The window lies within [Wx1, Wx2] along the X axis and [Wy1, Wy2]

along the Y axis. The viewport ranges between [Vx1, Vx2] and [Vy1, Vy2] along the X

and Y directions, respectively. In order to maintain the relative position of the point in the

viewport, we must have,

Wx − Wx1

Wx2 − Wx1
=

Vx − Vx1

Vx2 − Vx1

This relation can be rewritten as,

Vx = sx.Wx + tx

where,

sx =
Vx2 − Vx1

Wx2 − Wx1
and tx = sx.(−Wx1) + Vx1.

Maintenance of relative position of the point in the viewport also implies that,

Wy − Wy1

Wy2 − Wy1
=

Vy − Vy1

Vy2 − Vy1

From this relation, we can derive the y-coordinate of the point in viewport Vy in a way

similar to that of Vx as,

Vy = sy.Wy + ty

where,

sy =
Vy2 − Vy1

Wy2 − Wy1
and ty = sy.(−Wy1) + Vy1.
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From the expressions for Vx and Vy as derived here, we can form the viewport

transformation matrix Tvp as,

Tvp =





sx 0 tx

0 sy ty

0 0 1





Thus, to get the point on the viewport Pvp(x′, y′) from the window point Pw(x, y), we need

to perform the following matrix multiplication.





x′′

y′′

w



 = TvpPw =





sx 0 tx

0 sy ty

0 0 1









x

y

1





The coordinates of Pvp are computed as x′ =
x′′

w
, y′ =

y′′

w
, since the matrices are in

homogeneous form.

Let us assume that the point is projected on a normalized clipping window (as you can see, the

projected point in either parallel or perspective projection is (0,0,−0.5), which lies at the cen-

ter of the normalized window). We want to show the scene on a viewport having lower left and

top right corners at (4,4) and (6,8) respectively. What would the position of the point be in the

viewport?

Solution Since the clipping window is normalized, we have Wx1 = −1, Wx2 = 1, Wy1 = −1

and Wy2 = 1. Also, from the viewport specification, we have Vx1 = 4, Vx2 = 6, Vy1 = 4 and

Vy2 = 8. Therefore, sx =
6 − 4

1 − (−1)
= 1, sy =

8 − 4

1 − (−1)
= 2, tx = 1. − (−1) + 4 = 5 and

ty = 2. − (−1) + 4 = 6. Thus, the viewport transformation matrix is, Tvp =





1 0 5

0 2 6

0 0 1



. The new

coordinate of the point after viewport transformation will be,





1 0 5

0 2 6

0 0 1









0

0

−0.5



 =





−2.5

−3

−0.5





Since the derived point is in homogeneous form with −0.5 as the homogeneous factor, the trans-

formed point is

(

−2.5

−0.5
,

−3

−0.5

)

. In other words, the viewport coordinates of the projected point

will be (5,6).

Example 6.4
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Steps performed in the 3D viewing stage

In the 3D viewing stage of the graphics pipeline,

objects from the world coordinate are tranfomed

to the viewport objects through a series of trans-

formations. These are,

View transformation The world coordinate

objects are transformed to the view coordinate

system. This step involves setting-up of the view

coordinate system and transforming the objects

to it.

Canonical view volume We define a view vol-

ume and transform it to the canonical view vol-

ume.

Projection transformation The objects within

the canonical view volume are projected on the

(normalized) clipping window (the near face of the

canonical view volume).

Viewport transformation From the clipping

window, the projected objects are transformed

to the viewport defined in the device coordinate

system.

Thus, there are altogether four transforma-

tions that take place in this stage. Along with

those, this stage also involves setting-up of the

view coordinate system and the view volume.Two

other important components of this stage are clip-

ping in which objects outside the view volume

are removed (before projection) and hidden sur-

face removal, both of which we shall discuss in

Chapters 7 and 8.

SUMMARY

In this chapter, we learnt about the process of transforming objects from world coordinate to

viewport, which is an important and essential part of the image synthesis process. The trans-

formation takes place in distinct stages, which are analogous to the process of capturing a

picture with your camera. The very first step is to set-up the view coordinate system. In this

stage, the three orthogonal unit basis vectors of the view coordinate system are determined

from three input parameters: the camera position or the view coordinate origin, the look-at point,

and the view-up point (or view-up vector).After the formation of the view coordinate system,we

transform the object to the view coordinate system.

The transformed objects are still in 3D. We transform them to 2D view plane through pro-

jection. We learnt about the two basic types of projections: parallel and perspective. In parallel

projection, the projectors are parallel to each other. The projectors converge to a center of pro-

jection in perspective projection.Before projection,we first define a view volume,a 3D region that

encloses the objects we want to be part of the image. For parallel projection, the view volume

takes the shape of a rectangular parallelepipe. It takes the shape of a frustum for perspective

projection. For computational efficiency in subsequent stages of the graphics pipeline, the view

volumes are transformed to canonical view volumes which is a cube with all its points lying within

the range [−1,−1,−1] to [1,1,1]. Transformation to canonical view volume requires scaling for

parallel view volume and a combination of shear and scale for perspective view volume.

The objects in the canonical volume is projected on its near or view plane, which acts as the

normalized clipping window. The window is in view coordinate system. A final transformation is

applied on the points in the window to transform it to the points in the viewport, which is defined

in the device coordinate system.

As we have seen,totally four transformations take place in this stage:world to view coordinate

transformation,view volume to canonical view volume transformation,projection transformation,

and window-to-viewport transformation.When we define a view volume, the objects that lie out-

side neeed to be removed. This is done in the clipping stage, that we shall discuss in Chapter 7.

Moreover, to generate realistic images, we need to perform hidden surface removal, which we

shall learn in Chapter 8.
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Please refer to the bibliographic note of Chapter 7 for further reading.

BIBLIOGRAPHIC NOTE

KEY TERMS

Axonometric projection – a type of parallel projection in which the principal object surfaces are

not parallel to the view plane

Canonical view volume – a standardized view volume

Center of interest/Look-at point – the point in the world coordinate frame with respect to which

we focus our camera while taking a photograph

Center of projection – the point where the projectors meet in perspective projection

Clipping window – a region (usually rectangular) of the view plane

Oblique projection – a type of parallel projection in which the projectors are not perpendicular to

the view plane

Orthographic projection – a type of parallel projection in which projectors are perpendicular to

the view plane.

Parallel projection – a type of projection in which the projectors are parallel to each other

Perspective foreshortening – an effect due to perspective projection in which the closer objects

appear larger

Perspective projection – a type of projection in which the projectors meet at a point

Projection – the process of mapping an object from an n-dimensional space to an n − 1

dimensional space

Projectors – lines that originate from the object points to be projected and intersect the view plane

Vanishing points – an effect due to perspective projection in which lines that are not parallel

appear to meet at a point on the view plane

View confusion – an effect due to perspective projection in which the objects appear upside down

after projection

View coordinate – the coordinate reference frame used to represent a scene with respect to

camera parameters

View plane – the plane on which a 3D object is projected

View volume – a 3D region in space (in the view coordinate system) that is projected on the view

plane

View-up vector – a vector towards the direction of our head while taking a photograph with a

camera

Viewing transformation – the process of mapping a world coordinate object description to the

view the coordinate frame

Viewport – a rectangular region on the display screen where the content of the window is rendered

Window – a term used to denote the clipping window on the view plane

EXERCISES

6.1 Discuss the similarities between taking a photograph with a camera and transforming a

world coordinate obejct to view plane. Is there any difference?

6.2 Mention the inputs we need to construct a view coordinate system.

6.3 Explain the process of setting-up of the view coordinate system.

6.4 How do we transform objects from world coordinate to view coordinate? Explain.

6.5 What are the broad categories of projections? Discuss their difference(s).
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6.6 Why are perpective projections preferable over parallel projections to generate realistic

effects? When do we need parallel projection?

6.7 Illustrate with diagrams the view volumes associated with each of the two broad projection

types.

6.8 Why do we need canonical view volumes? Discuss how we can transform arbitrary volumes

to canonical forms.

6.9 Derive the transformation matrices for parallel and perspective projections.

6.10 How is viewport different from window? Derive the window-to-viewport transformation

matrix.

6.11 Does the projection transformation truly transform objects from 3D to 2D? Discuss.

6.12 Consider a spherical object centered at (1,1,1) with a radius of 1 unit. A camera is located

at the point (1,1,4) and the look-at point is (1,1,2). The up direction is along the negative Y

direction. Answer the following.

(a) Determine the coordinates of the point Pv in the view coordinate system to which the

point P(1,1,2) is transformed.

(b) Assume a sufficiently large view volume that encloses the entire sphere after transfor-

mation. Its near plane is z = −1 and the clipping window is defined between [−10,−10]

to [10,10]. What would the position Pw of the point Pv on the clipping window be after

we perform (i) parallel and (ii) perspective projection? Ignore canonical transformations.

(c) Assume a view port defined between [2,3] (lower left corner) and [5,6] (top right corner)

in the device coordinate system. Determine the position of Pw on this viewport after

window-to-viewport transformation.
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CHAPTER

7 Clipping

Learning Objectives

After going through this chapter, the students will be able to

• Understand the idea of clipping in two and three dimensions

• Learn about point clipping in two and three dimensions

• Learn the Cohen–Sutherland line clipping algorithm in two and three dimensions

• Understand the working of the parametric line clipping algorithm with the Liang–Barsky

algorithm

• Know about the fill area clipping issues

• Learn about the Sutherland–Hodgeman fill area clipping algorithm for two and three

dimensions

• Understand the steps of the Weiler–Atherton fill area clipping algorithm

• Learn the algorithm to convert a convex polygon into polygonal meshes,which is required

for three-dimensional fill area clipping

INTRODUCTION

In Chapter 6, we discussed the concept of view volume. As you may recall, before projec-

tion on the view plane, we define a 3D region (in the view coordinate system) that we call as

view volume. Objects within this region are projected on the view plane while objects that

lie outside the volume boundary are discarded. An example is shown in Fig. 7.1. The process

of discarding objects that lie outside the volume boundary is known as clipping. How does

the computer discard (or clip) objects? We employ some programs or algorithms for this

purpose, which are collectively known as the clipping algorithms. In this chapter, we shall

learn about these algorithms.

Two things are to be noted here. Recall the important concept we learnt in Chapter 6,

namely the canonical view volume (the cube). The algorithms we discuss in this chapter

shall assume that the clipping is done against canonical view volumes only. Moreover, for

the ease of understanding the algorithms, we shall first discuss the clipping algorithms

in 2D. Clipping in 3D is performed by extending the 2D algorithms, which we shall

discuss next.
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X

Y

Z

View coordinate

origin

Object partially inside the volume boundary.

The portion that lies outside (above the

dotted line) has to be clipped

Object fully outside

the volume boundary

Object fully inside

the volume boundary

Fig. 7.1 Concept of clipping.The objects that lie outside the boundary,either fully or partially,

are to be discarded or clipped. This is done with the clipping algorithms.

7.1 CLIPPING IN 2D

Unlike the view volume which is a 3D concept, we shall assume a view window, which is a

square-shaped region on the view plane, to discuss 2D clipping algorithms. This is equiva-

lent of assuming that the view volume and all the objects are already projected on the view

plane. The view volume is projected to form the window. Other objects are projected to form

points, lines, and fill-areas (e.g., an enclosed region such as a polygon). Thus, our objective

is to clip points, lines, and fill-areas with respect to the window.

The simplest is point clipping. Given a point with coordinate (x,y), we simply check if

the coordinate lies within the window boundary. In other words, if wxmin ≤ x ≤ wxmax

AND wymin ≤ y ≤ wymax, we keep the point; otherwise, we clip it out. (wxmin, wxmax) and

(wymin, wymax) are the minimum and maximum x and y coordinate values of the window,

respectively.

Line clipping is not so easy, however. We can represent any line segment with its end

points. For clipping, we can check the position of these end points to decide whether to clip

the line or not. If we follow this approach, either of the following three scenarios can occur,

which is illustrated in Fig. 7.2.

1. Both the end points are within the window boundary. In such cases, we don’t clip the line.

2. One end point is inside and the other point is outside. Such lines must be clipped.

3. Both the end points are outside. We cannot say for sure if the whole line is outside the

window or part of it lies inside (see Fig. 7.2). Thus, we have to check for line–boundary

intersections to decide if the line needs to be clipped or not.

As you can see in Fig. 7.2, when both the line end points are outside of the window, the

line may be fully or partially outside. We cannot determine this from just the position of

the end points. What we can do is to determine if there are intersection points of the line

and the window boundaries (see Appendix for calculation of intersection points between

two lines). Thus, given a line with both end points outside, we have to check for line–

window intersection for all the four window boundary line segments. Clearly, the process
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Wymax

Wxmax

Wymin

Wxmin

L1

L2

L3

L4

Fig. 7.2 Three scenarios for line clipping. For the line L1, both the line endpoints are inside

the window, so we don’t clip the line. For L2, one end point is inside and the other one is

outside, so we clip it. In case of L3 and L4, both the end points are completely outside the

window. However, L3 is partially inside and needs further checking to determine the portion

to be clipped.

is time-consuming. In a real-world application which may require thousands of line clipping

in rendering a scene, it is not practical and we need more efficient clipping algorithms.

7.1.1 Cohen–Sutherland Line Clipping Algorithm

The Cohen–Sutherland line clipping algorithm is one efficient way of performing line clip-

ping. In this algorithm, the world space (the window and its surrounding) is assumed to be

divided into nine regions. The regions are formed by extending the window boundaries, as

shown in Fig. 7.3. Each of these regions has a 4-bit unique code as identifier. Each bit in

the code indicates the position (above, below, right, or left, in that order from left to right)

of the region with respect to the window, as shown in Fig. 7.3. For example, a code of 1001

indicates that the corresponding region is situated above left of the window.

Above left Above right

Left

Below left Below right

Window

Below

Right

Above

0101 0100 0110

1001 1000 1010

0001 0000 0010

The 4-bit code and significance of each bit

LeftBelow RightAbove

Fig. 7.3 The nine regions of the Cohen–Sutherland algorithm. The left figure on top shows

the regions while the right figure shows the region codes. The four bit code is explained in

the bottom figure. Note that the window gets a code 0000.
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Given the two end points of a line, the algorithm first assigns region codes to the

end points. Let an end point be denoted by P(x, y) and the window be specified by

(xmin, xmax, ymin, ymax) (i.e., the x and y extents of its boundary). Then, we can determine

region code of P through the following simple check.

Bit 3 = sign(y − ymax)

Bit 2 = sign(ymin − y)

Bit 1 = sign(x − xmax)

Bit 0 = sign(xmin − x)

where sign(a) = 1 if a is positive, 0 otherwise.

Once the region codes are assigned to both the end points, the following checks are

performed and the corresponding action taken.

Cohen–Sutherland line clipping algorithm

1: Input: A line segment with end points PQ and the window parameters (xmin, xmax, ymin, ymax)

2: Output: Clipped line segment (NULL if the line is completely outside)

3: for each end point with coordinate (x,y), where sign(a) = 1 if a is positive, 0 otherwise do

4: Bit 3 = sign (y − ymax)

5: Bit 2 = sign (ymin − y)

6: Bit 1 = sign (x − xmax)

7: Bit 0 = sign (xmin − x)

8: end for

9: if both the end point region codes are 0000 then

10: RETURN PQ.

11: else if logical AND (i.e., bitwise AND) of the end point region codes 6= 0000 then

12: RETURN NULL

13: else

14: for each boundary bi where bi = above, below, right, left, do

15: Check corresponding bit values of the two end point region codes

16: if the bit values are same, then

17: Check next boundary

18: else

19: Determine bi-line intersection point using line equation

20: Assign region code to the intersection point

21: Discard the line from the end point outside bi to the intersection point (as it is outside the

window)

22: if the region codes of both the intersection point and the remaining end point are 0000 then

23: Reset PQ with the new end points

24: end if

25: end if

26: end for

27: RETURN modified PQ

28: end if

Algorithm 7.1
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1. If both the end point region codes are 0000, the line is completely inside the window.

Retain the line.

2. If logical AND (i.e., bitwise AND) of the end point region codes is not equal to 0000, the

line is completely outside the window. Discard the entire line.

However, when none of these above cases occur, the line is partially inside the window

and we need to clip it. For clipping, we need to calculate the line intersection point with

window boundaries. This is done by taking one end point and following some order for

checking, e.g., above, below, right, and left. For each boundary, we compare the correspond-

ing bit values of the two end point region codes. If they are not the same, the line intersects

that particular boundary. Using the line equation, we determine the intersection point and

assign the region code to the intersection point as before. In the process, we discard the line

segment outside the window. Next, we compare the two new end points to see if they are

completely inside the window. If not, we take the other end point and repeat the process. The

pseudo-code of the algorithm is shown in Algorithm 7.1.

Consider the line segment AB in Fig. 7.4.

A(5,3)

B(6,2)

4

2

2 4

Fig. 7.4

From the figure, we see that xmin = 2, xmax = 4, ymin = 2, and ymax = 4. Also, A(5,3) and

B(6,2). The first step is to determine the region codes of A and B (lines 3–8 of Algorithm 7.1).

Let’s consider A first. We can see that for A,

Bit 3 = sign (3 − 4) = sign (−1) = 0

Bit 2 = sign (2 − 3) = sign (−1) = 0

Bit 1 = sign (5 − 4) = sign (1) = 1

Bit 0 = sign (2 − 5) = sign (−3) = 0

since sign(a) = 0 if a ≤ 0. Thus, the region code of A is 0010. Similarly the region code of B

is derived as 0010. The next step (lines 9–27 of Algorithm 7.1) is the series of checks. The first

check fails as both the end points are not 0000. However, the second check succeeds since the

logical AND of AB is 0010 (i.e., 6= 0000). Hence, we do not need to go any further. The line is

totally outside the window boundary. We do not need to clip it and discard it as a whole.

Example 7.1
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Consider the line segment PQ in Fig. 7.5.

P(3,3)

Q(5,2)

4

2

2 4

Fig. 7.5

We have xmin = 2, xmax = 4, ymin = 2, and ymax = 4. Also, P(3,3) and Q(5,2). We first determine

the region codes of P and Q (lines 3–8 of Algorithm 7.1). Let us consider P first. We can see that

for P,

Bit 3 = sign (3 − 4) = sign (−1) = 0

Bit 2 = sign (2 − 3) = sign (−1) = 0

Bit 1 = sign (3 − 4) = sign (−1) = 0

Bit 0 = sign (2 − 3) = sign (−1) = 0

Thus, the region code of P is 0000. Similarly the region code of Q is derived as 0010. The next step

(lines 9–27 of Algorithm 7.1) is the series of checks. The first check fails as both the end points

are not 0000. The second check also fails as the logical AND of PQ is 0000. Hence, we need to

determine line–boundary intersection.

From the end points, we can derive the line equation as: y = −
1
2
x +

9
2

(see Appendix for the

derivation of line equation from end points). Now, we have to check for the intersection of this

line with the boundaries following the order: above, below, right, left. The aforementioned bit val-

ues (bit 3) of P and Q are the same. Hence, the line does not cross above boundary (lines 16–19

of Algorithm 7.1). Similarly, we see that it does not cross the below boundary. However, for the

right boundary, the two corresponding bits (bit 1) are different. Hence, the line crosses the right

boundary.

The equation of the right boundary is x = 4. Putting this value in the line equation, we get

the intersection point as Q′(4, 5
2
). We discard the line segment Q′Q since Q is outside the right

boundary (line 21 of Algorithm 7.1). Thus, the new line segment becomes PQ′. We determine

the region code of Q′ as 0000. Since both P and Q′ have region code 0000, the algorithm resets

PQ by changing Q to Q′ (lines 22–23 of Algorithm 7.1). Finally, we check the left boundary.

Since there is no intersection (bit 0 is same for both end points), the algorithm returns PQ′

and stops.

Example 7.2
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Consider the line segment MN in Fig. 7.6.

M(1, 3)

N(5, 2)

4

2

2 4

Fig. 7.6

Here we have xmin = 2, xmax = 4, ymin = 2, and ymax = 4 and the two end points M(1,3) and

N(5,2). We determine the region code for M first as,

Bit 3 = sign (3 − 4) = sign (−1) = 0

Bit 2 = sign (2 − 3) = sign (−1) = 0

Bit 1 = sign (1 − 4) = sign (−3) = 0

Bit 0 = sign (2 − 1) = sign (1) = 1

Thus, the region code of M is 0001. Similarly the region code of N is derived as 0010. The next

step (lines 9–27 of Algorithm 7.1) is the series of checks. The first check fails as both the end

points are not 0000. The second check also fails as the logical AND of MN is 0000. Hence, we

need to determine line–boundary intersection points.

From the end points, we can derive the line equation as: y = −
1
4
x +

13
4

(see Appendix for the

derivation). Next, we check for the intersection of this line with the boundaries following the order:

above, below, right, left. These bit values (bit 3) of M and N are the same. Hence, the line does not

cross above boundary (lines 16–19 of Algorithm 7.1). Similarly, we see that it does not cross the

below boundary (bit 2 is same for both). However, for the right boundary, the two corresponding

bits (bit 1) are different. Hence, the line crosses the right boundary.

The equation of the right boundary is x = 4. Putting this value in the line equation, we get

the intersection point as N ′(4, 9
4
). We discard the line segment N ′N since N is outside the right

boundary (line 21 of Algorithm 7.1). Thus, the new line segment becomes MN ′. We determine the

region code of N ′ as 0000.

We now have two new end points M and N ′ with the region codes 0001 and 0000, respectively.

The boundary check is now performed for the left boundary. Since the bit values are not the same,

we check for intersection of the line segment MN ′ with the left boundary. The equation of the left

boundary is x = 2. Putting this value in the line equation, we get the intersection point as M ′(2, 11
4

).

We discard the line segment MM ′ since M is outside the left boundary (line 21 of Algorithm 7.1).

Thus, the new line segment becomes M ′N ′. We determine the region code of M ′ as 0000.

Since both M ′ and N ′ have the region code 0000, the algorithm resets the line segment to M ′N ′

(lines 22–23 of Algorithm 7.1). As no more boundary remains to be checked, the algorithm returns

M ′N ′ and stops.

Example 7.3
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7.1.2 Liang–Barsky Line Clipping Algorithm

The Cohen–Sutherland algorithm works well when the number of lines, which can be clipped

without further processing, is large compared to the size of the input set of lines. However, it

still has to perform some boundary–line intersection calculations. There are other faster line-

clipping methods developed to reduce the intersection calculation further, based on more

efficient tests. The algorithm proposed by Cyrus and Beck (see the bibliographic note for

reference) was among the earliest attempts in this direction, which is based on parametric

line equation. Later, a more efficient version was proposed by Liang and Barsky. The basic

idea of the Liang–Barsky algorithm is as follows.

Given a line segment with endpoints P(x1, y1) and Q(x2, y2), we can represent the line in

parametric form as,

x = x1 + u1x where 1x = x2 − x1

y = y1 + u1y where 1y = y2 − y1

where 0 ≤ u ≤ 1 is the parameter. Given the window parameters (xmin, xmax, ymin, ymax),

the following relationships should hold for the line to be retained.

xmin ≤ x1 + u1x ≤ xmax

ymin ≤ y1 + u1y ≤ ymax

We can rewrite the Example 7.4 relations in a compact form as pk ≤ qk where k = 1, 2, 3, 4.

Thus,

p1 = −1x, q1 = x1 − xmin

p2 = 1x, q2 = xmax − x1

p3 = −1y, q3 = y1 − ymin

p4 = 1y, q4 = ymax − y1

where k = 1, 2, 3, 4 corresponds to the left, right, below, and above window boundaries, in

that order. If for any k for a given line, pk = 0 AND qk < 0, discard the line as it is com-

pletely outside the window. Otherwise, we calculate two parameters u1 and u2, that define the

line segment within the window. In order to calculate u1, we first calculate the ratio rk =
qk

pk

for all those edges for which pk < 0. Then, we set u1 = max{0, rk}. Similarly for u2, we

calculate the ratio rk =
qk

pk
for all those edges for which pk > 0 and then set u2 = min{1, rk}.

If u1 > u2, the line is completely outside, so we discard it. Otherwise, the end points of the

clipped lines are calculated as follows.

1. If u1 = 0, there is one intersection point which is calculated as x2 = x1 + u21x, y2 =

y1 + u21y (note that the other end point remains the same).

2. Otherwise, there are two intersection points (i.e., both the end points need to be changed).

The two new end points are calculated as x′1 = x1 + u11x, y′1 = y1 + u11y and

x2 = x1 + u21x, y2 = y1 + u21y.

The pseudocode of the algorithm is shown in Algoritm 7.2.
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Liang–Barsky line clipping algorithm

1: Input: A line segment with end points P(x1, y1) and Q(x2, y2), the window parameters

(xmin, xmax, ymin, ymax). A window boundary is denoted by k where k can take the values 1, 2, 3,

or 4 corresponding to the left, right, below, and above boundary, respectively.

2: Output: Clipped line segment

3: Calculate 1x = x2 − x1 and 1y = y2 − y1

4: Calculate p1 = −1x, q1 = x1 − xmin

5: Calculate p2 = 1x, q2 = xmax − x1

6: Calculate p3 = −1y, q3 = y1 − ymin

7: Calculate p4 = 1y q4 = ymax − y1

8: if pk = 0 and qk < 0 for any k = 1, 2, 3, 4 then

9: Discard the line as it is completely outside the window

10: else

11: Compute rk =
qk

pk
for all those boundaries k for which pk < 0. Determine parameter u1 =

max{0, rk}.

12: Compute rk =
qk

pk
for all those boundaries k for which pk > 0. Determine parameter u2 =

min{1, rk}.

13: if u1 > u2 then

14: Eliminate the line as it is completely outside the window

15: else if u1 = 0 then

16: There is one intersection point, calculated as x2 = x1 + u21x, y2 = y1 + u21y

17: Return the two end points (x1, y1) and (x2, y2)

18: else

19: There are two intersection points, calculated as: x′1 = x1 + u11x, y′1 = y1 + u11y and

x2 = x1 + u21x, y2 = y1 + u21y

20: Return the two end points (x′1, y′1) and (x2, y2)

21: end if

22: end if

Algorithm 7.2

We will show here the running of the algorithm for one of the three examples (Example 7.2) used

to illustrate the Cohen–Sutherland algorithm. The working of the Liang–Barsky algorithm for the

other two examples can be understood in a likewise manner and left as an exercise for the reader.

Now let us reconsider the line segment PQ in Example 7.2. The figure is reproduced here for

convenience.

P(3,3)

Q(5,2)

4

2

2 4

Example 7.4
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From the figure, we see that xmin = 2, xmax = 4, ymin = 2, and ymax = 4. Also, P(3,3) and Q(5,2).

We first calculate 1x = 2, 1y = −1, p1 = −2, q1 = 1, p2 = 2, q2 = 1, p3 = 1, q3 = 1, p4 = −1,

and q4 = 1 (lines 3–7 of Algorithm 7.2). Since the condition pk = 0 and qk < 0 for any k is not

true, the first condition (lines 8–9 of Algorithm 7.2) fails. Hence, we calculate u1 and u2.

Note that p1, p4 < 0. Hence we calculate r1 = −
1
2

and r4 = −1. Thus, u1 = max{0,−
1
2
,

−1} = 0 (line 11 of Algorithm 7.2). Also, p2, p3 > 0. Hence we calculate r2 =
1
2

and r3 = 1.

Thus, u2 = min{1,

1
2
, 1} = 1

2
(line 12 of Algorithm 7.2). Since u1 < u2, the line is not eliminated

(lines 13–14 of Algorithm 7.2). However, u1 = 0. Thus, the next condition satisfies (line 15 of

Algorithm 7.2). So, we calculate the single intersection point: x2 = 4, y2 =
5
2
. Thus, the end

points of the clipped line segment returned are (3,3) and (4, 5
2
) (lines 16–17 of Algorithm 7.2).

7.1.3 Fill-area Clipping: Sutherland–Hodgeman Algorithm

As we saw, the previous algorithms are used for clipping lines. In many situations, we have

to clip polygons with respect to the window. Although we can use the line clippers to the

individual edges of the polygon, the approach is not necessarily efficient and better; there

are more efficient algorithms. In the following discussion, we look-at one such algorithm,

namely the Sutherland–Hodgeman polygon clipping algorithm.

The basic idea of the algorithm is as follows: we start with four clippers or the lines that

define the window boundaries. Each clipper takes as input a list of ordered pair of vertices

(i.e., edges) and produces another list as output. We impose an order to the clipper for check-

ing. Let it be left clipper, followed by right clipper, followed by bottom clipper, followed by

top clipper. The original polygon vertices are given as input to the first (i.e., left) clipper. To

create the vertex list, a naming convention of the vertices is followed (either clockwise or

anti-clockwise). Let us assume anti-clockwise naming of the vertices. For each clipper, the

output vertex list is generated in the following way.

Let the input vertex list to a clipper be denoted by the set V = {v1, v2, · · · , vn} where vi

denotes the the ith vertex. Then, for each edge in the list (i.e., successive vertex pair) (vi, vj),

we do the following:

1. If vi is inside and vj outside of the clipper, return the intersection point of the clipper

with the edge (vi, vj).

2. If both the vertices are inside the clipper, return vj.

3. If vi is outside and vj inside of the clipper, return the intersection point of the clipper

with the edge (vi, vj) and vj.

4. If both the vertices are outside the clipper, return NULL.

The terms inside and outside are to be interpreted differently for different clipper. For the

left clipper, if a vertex is on its right side, then the vertex is inside; otherwise, it is outside.

For the right clipper, a vertex is inside if it is on the left side; otherwise it is outside. For the

top clipper, a vertex below means the vertex is inside, else the vertex is outside. Similarly,

for the bottom clipper, an inside vertex implies it is above the clipper, otherwise it is outside.

In all the cases, we assume that a vertex is inside if it is on the clipper. The pseudocode of

the Sutherland–Hodgeman algorithm is shown in Algorithm 7.3.
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Sutherland–Hodgeman fill-area clipping algorithm

1: Input: Four clippers: cl = xmin, cr = xmax, ct = ymax, cb = ymin corresponding to the left, right,

top, and bottom window boundaries, respectively. The polygon is specified in terms of its vertex list

Vin = {v1, v2, · · · , vn}, where the vertices are named anti-clockwise.

2: for each clipper in the order cl, cr, ct, cb do

3: Set output vertex list Vout = NULL, i = 1, j = 2

4: repeat

5: Consider the vertex pair vi and vj in Vin

6: if vi is inside and vj outside of the clipper then

7: ADD the intersection point of the clipper with the edge (vi, vj) to Vout

8: else if both the vertices are inside the clipper then

9: ADD vj to Vout

10: else if vi is outside and vj inside of the clipper then

11: ADD the intersection point of the clipper with the edge (vi, vj) and vj to Vout

12: else

13: ADD NULL to Vout

14: end if

15: until all edges (i.e., consecutive vertex pairs) in Vin are checked

16: Set Vin = Vout

17: end for

18: Return Vout

Algorithm 7.3

Consider the polygon with vertices {1,2,3} (named anti-clockwise) shown in Fig. 7.7. We wish

to determine the clipped polygon (i.e., the polygon with vertices {2′,3′,3′′,1′,2}) following the

Sutherland–Hodgeman algorithm.

3

3′3″

2

2′

1

1′

Fig. 7.7

We check the vertex list against each clipper in the order left, right, top, bottom (the outer for

loop, line 2 of Algorithm 7.3). For the left clipper, the input vertex list Vin = {1, 2, 3}. The pair

of vertices to be checked for the left clipper are {1,2}, {2,3}, and {3,1} (the inner loop, line 4 of

Algorithm 7.3). For each of these pairs, we perform the checks (lines 6–13 of Algorithm 7.3) to

determine Vout for the left clipper. We start with {1,2}. Since both the vertices are on the right side

of the left clipper (i.e., both are inside), we set Vout = {2}. Similarly, after checking {2,3}, we set

Vout = {2, 3} and after checking {3,1}, the final output list becomes Vout = {2, 3, 1}.

Example 7.5
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In the next iteration of the outer loop (check against right clipper), we set Vin = Vout = {1, 2, 3}

and Vout = NULL. Thus the three pair of vertices to be checked are {1,2}, {2,3}, and {3,1}.

In {1,2}, both the vertices are inside (i.e., they are on the left side of the right clipper); hence

Vout = {2}. For the next pair {2,3}, we notice that vertex 2 is inside while vertex 3 is out-

side. Thus, we compute the intersection point 2′ of the right clipper with the edge {2,3} and set

Vout = {2, 2′}. For the remaining pair {3,1}, vertex 3 is outside (on the right side) and vertex 1

inside (on the left side). Thus, we calculate the intersection point 3′ of the edge with the clipper

and set Vout = {2, 2′, 3′, 1}. The inner loop stops as all the edges are checked.

Next, we consider the top clipper. We set Vin = Vout = {2, 2′, 3′, 1} and Vout = NULL. The pair

of vertices to be checked are {2,2′}, {2′,3′}, {3′,1}, and {1,2}. Since both the vertices of {2,2′} are

inside (i.e., below the clipper), Vout = {2′}. Similarly, after checking {2′,3′}, we set Vout = {2′, 3′}

as both are inside. In the pair {3′,1}, the vertex 3′ is inside whereas the vertex 1 is outside (i.e.,

above the clipper). Hence, we calculate the intersection point 3′′ between the clipper and the edge

and set Vout = {2′, 3′, 3′′}. In the final edge {1,2}, the first vertex is outside while the second ver-

tex is inside. Thus, we calculate the intersection point 1′ between the edge and the clipper and set

Vout = {2′, 3′, 3′′, 1′, 2}. After this, the inner loop stops.

Finally, we check against the bottom clipper. Before the checking starts, we set Vin = Vout =

{2′, 3′, 3′′, 1′, 2} and Vout = NULL. As all the vertices are inside (i.e., above the clipper), after the

inner loop completes, the output list becomes Vout = {2′, 3′, 3′′, 1′, 2} (i.e., same as the input list,

check for yourself).

Thus, after the input polygon is checked against all the four clippers, the algorithm returns the

vertex list {2′,3′,3′′,1′,2} as the clipped polygon.

7.1.4 Fill-area Clipping: Weiler–Atherton Algorithm

The Sutherland–Hodgeman algorithm works well when the fill-area is a convex polygon to

be clipped against a rectangular clipping window. The Weiler–Atherton algorithm provides

a more general fill-area clipping procedure. It can be used for any type of polygon fill-area

(concave or convex) against any polygonal clipping window.

In the Sutherland–Hodgeman algorithm, we processed the edges of the fill-area following

only a particular order and performed clipping. However, the processing is done differently

in the Weiler–Atherton algorithm. Here, we start with processing the fill-area edges in a

particular order (typically anti-clockwise). We continue along the edges till we encounter an

edge that crosses to the outside of the clip window boundary. At the intersection point, we

make a detour: we now follow the edges of the clip window (along the same direction main-

taining the traversal order). We continue our traversal along the edges of the clip boundary

till we encounter another fill-area edge that crosses to the inside of the clip window. At this

point, we resume our polygon edge traversal again along the same direction. The process

continues till we encounter a previously processed intersection point. So, the two rules of

traversal followed in the Weiler–Atherton algorithm are the following:

1. From an intersection point due to an outside-to-inside fill-area edge (with respect to a clip

boundary), follow the fill-area polygon edges.
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2. From an intersection point due to an inside-to-outside fill-area edge (with respect to a clip

boundary), follow the window boundaries.

In both these cases, the traversal direction remains the same. At the end of the process-

ing, when we encounter a previously processed intersection point, we output the vertex

list representing a clipped area. However, if the whole fill-area polygon is not fully cov-

ered at this point, we resume our traversal along the polygon edges in the same direction

from the last intersection point of an inside-outside polygon edge. The pseudocode of the

Weiler–Atherton algorithm is shown in Algorithm 7.4.

Weiler–Atherton fill-area clipping algorithm

1: Start from a vertex inside the window.

2: Process the edges of the polygon fill-area in any particular order (clockwise or anti-clockwise). Con-

tinue the processing till an edge of the fill-area is found that crosses a window boundary from inside

to outside. The intersection point of the edge with the window boundary is the exit-intersection point.

Record the intersection point.

3: From the exit-intersection point, process the window boundaries in the same direction (clockwise or

anti-clockwise). Continue processing till another intersection point (of a fill-area edge with a window

boundary) is found.

4: if the intersection point is a new point not yet processed then

5: Record the intersection point

6: Continue processing the fill-area edges till a previously processed vertex is encountered

7: end if

8: Form the output vertex list Vout for this section of the clipped fill-area

9: if all the polygon fill-area edges have been processed then

10: Output Vout

11: else

12: Return to the exit-intersection point

13: Continue processing the fill-are a edges in the same order (clockwise or anti-clockwise) till another

intersection point (of a fill-area edge with a window boundary) is found

14: Go to the line 4

15: end if

Algorithm 7.4

Let us consider the fill-area shown in Fig. 7.8. The vertices of the polygon are named anti-

clockwise. Note that this is a concave polygon, which is to be clipped against the rectangular

window. Let us try to perform clipping following the steps of the Algorithm 7.4. In the figure, the

traversal of the fill-area edges and window boundaries is shown with arrows.

We first start with the edge {1,2}. Both the vertices are inside the window. Since there is no inter-

section, we add these vertices to the output vertex list Vout and continue processing the fill-area

edges anti-clockwise.

Next we process the edge {2,3}. As we can observe, the edge goes from inside of the

clip window to outside. We record the intersection point 2′ and add it to Vout. 2′ is the

Example 7.6



i

i

“Chapter-7” — 2015/9/15 — 9:37 — page 143 — #14
i

i

i

i

i

i

Clipping 143

2

1

4

5

3

2′

1′

6′

6

3′

Fig. 7.8

exit-intersection point. At this point, we make a detour and proceed along the window boundary

in the anti-clockwise direction.

While traversing along the boundary, we encounter the intersection point 1′ of the fill-area edge

{6,1} with the boundary. This is a new intersection point not yet processed. We add this to Vout.

Then, we start processing the fill-area edges again.

The fill-area edge processing takes us to the vertex 1. We have already processed this vertex.

Thus, we have completed determining one clipped segment of the fill area, represented by the ver-

tex list Vout = {1, 2, 2′, 1′, 1}. We output this list. Since some edges of the fill-area are not yet

processed, we return to the exit-intersection point 2′ and continue processing the fill-area edges.

We first check the edge segment {2′,3}. Since the vertex 3 is on the left side of the left window

boundary (i.e., outside the clip window), we continue processing the fill-area anti-clockwise.

The next edge processed is {3,4}. Note that the edge intersects the window boundary at 3′.

Since the vertex 4 is inside the window and 3′ is a new intersection point, we add the intersection

point 3′ and the vertex 4 to the output vertex list Vout. We continue processing the fill area edges.

Both the vertices of the next edge {4,5} are inside the clipping window. So, we simply add them

to Vout and continue processing the fill-area edges.

The next edge {5,6} intersects the window boundary at the intersection point 6′. This is an

exit-intersection point. We record the intersection point and add it to the output vertex list Vout.

From 6′, we start processing the window boundaries again (anti-clockwise). During this pro-

cessing, we encounter the intersection point 3′. This is already processed before. So, we output

Vout = {3′, 4, 5, 6′, 3′} that represents the other clipped region of the fill area. Since now all the

edges of the fill-area are processed, the algorithm stops at this stage.

7.2 3D CLIPPING

So far, we have discussed clipping algorithms for 2D. The same algorithms, with a few mod-

ifications, are used to perform clipping in 3D. A point to be noted here is that clipping is

performed against the normalized view volume (usually the symmetric cube with each coor-

dinates in the range [−1,1] in the three directions). In the following, we will discuss only the

extension of the 2D algorithms without further elaborations, as the core algorithms remain

the same.

Point clipping in 3D is done in a way similar to 2D. Given a point with coordinate (x,y,z),

we simply check if the coordinate lies within the view volume. In other words, if −1 ≤ x ≤ 1

AND −1 ≤ y ≤ 1 AND −1 ≤ z ≤ 1, we keep the point; otherwise, we clip it out.
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Bit 2

Right

Bit 1
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Fig. 7.9 The 27 regions of the Cohen–Sutherland algorithm for 3D. The 6-bit code is

explained in the bottom figure. Note that only the view volume interior gets a code 0000.

7.2.1 3D Line Clipping

The Cohen–Sutherland can be extended for 3D line clipping. The core idea of the 3D

Cohen–Sutherland algorithm remains the same: we divide the view coordinate space into

regions. However, there are the following major differences between the two versions of the

algorithm.

1. Unlike in 2D, we have 27 regions to consider.

2. Regions are encoded with 6 bits corresponding to the 6 planes (far, near, top, bottom,

right, left) of the cube, unlike the 4 bits in 2D. The 6 bits are (from left to right):

The 27 regions and the 6-bit encoding scheme are depicted in Fig. 7.9. It is left as an

exercise for the reader to modify Algorithm 7.1 taking into account these considerations.

7.2.2 3D Fill-area Clipping

In 3D fill-area (polyhedron) clipping, we first check if the bounding volume of the poly-

hedron is outside the view volume (by comparing their maximum and minimum coordi-

nates in each of the x, y, z directions). Otherwise, we can apply the 3D extension of the

Sutherland–Hodgeman algorithm to perform the clipping.

The core idea of the 3D Sutherland–Hodgeman algorithm remains the same. The main

differences are outlined below.

1. A polyhedron is made up of polygonal surfaces. We take one surface at a time to per-

form clipping. Usually, the polygon is further divided into triangular meshes. Then, each
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triangle in the mesh is processed at a time. Thus, there are two more outer loops in

Algorithm 7.3. The outermost loop is for checking one surface at a time. Inside this

loop, the next level loop processes each triangle in the mesh (of that surface). Then the

two loops of Algorithm 7.3 are executed in sequence.

2. Instead of four clippers, we now have six clippers corresponding to the six bounding sur-

faces of the normalized view volume. Hence, the for loop in Algorithm 7.3 (lines 2–17)

is executed six times.

Algorithm 7.5 shows a quick and easy way of creating a triangle mesh from a convex

polygon.

Algorithm to create triangle mesh from a convex polygon

1: Input: Set of vertices V = {v1, v2, · · · , vn}, the triangle set VT = NULL

2: Output: Set of triangles VT

3: repeat

4: Take first three vertices from V to form the vertex set vt representing a triangle

5: Add vt to VT

6: Reset V by removing from it the middle vertex of vt

7: until V contains only three vertices

8: Add V to VT and Return VT

Algorithm 7.5

Let us consider an example to understand the idea of Algorithm 7.5. Suppose we want to

create a triangle mesh from the polygon shown in Fig. 7.10.

5
4

3

2

1

Fig. 7.10 Polygon for creating triangular mesh

The input vertex list is V = {1, 2, 3, 4, 5} (we followed an anti-clockwise vertex naming con-

vension). In the first iteration of the loop, we create vt = {1, 2, 3} and reset V = {1, 3, 4, 5}

after removing vertex 3 (the middle vertex of vt). Then we set VT = {{1, 2, 3}}. In the next

iteration, V = {1, 3, 4, 5}. We create vt = {1, 3, 4} and reset V = {1, 4, 5}. Also, we set

VT = {{1, 2, 3}, {1, 3, 4}}. Since V now contains three vertices, the iteration stops. We set

VT = {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}} and return VT as the set of three triangles.

Note that Algorithm 7.5 works when the input polygon is convex. In case of concave poly-

gons, we first split it into a set of convex polygons and then apply Algorithm 7.5 on each

member of the set. There are many efficient methods for splitting a concave polygon into a

set of convex polygons such as the vector method, the rotation method and so on. However,
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we shall not go into the details of these methods any further, as they are not necessary to

understand the basic idea of 3D clipping.

SUMMARY

In this chapter, we learnt the basic idea behind the clipping stage of the graphics pipeline. For

ease of understanding,we started with the 2D clipping process.We covered three basic clipping

algorithms for line- and fill-area (polygon) clipping, namely the Cohen–Sutherland line clipping

algorithm, the Liang–Barsky line clipping algorithm, and the Sutherland–Hodgeman polygon

clipping algorithm.

The core idea of the Cohen–Sutherland algorithm is the division of world space into regions,

with each region having its own and unique region code. Based on a comparison of region

codes of the end points of a line, we decide if the line needs to be clipped or not. On the

other hand, the Liang–Barsky algorithm makes use of a parametric line equation to perform

clipping. Clipping is done based on the line parameters determined from the end points of the

line. The algorithm reduces line-window boundary intersection calculation to a great extent. In

the Sutherland–Hodgeman algorithm, polygons are clipped against window boundaries, on the

basis of the inside-outside test.

The same 2D algorithms are applicable in 3D with some minor modifications. The first thing

to note is that the clipping algorithms are designed keeping the normalized view volume in mind.

There are 27 regions and a 6-bit region code to be considered for using the Cohen–Sutherland

algorithm in 3D. In order to use the Sutherland–Hodgeman algorithm, we need to consider six

clippers as against four in 2D.

In clipping, we discard the portion of the object that lies outside the window/view vol-

ume. However, depending on the position of the viewer, some portion of an inside object

also sometimes needs to be discarded. When we want to discard parts of objects that are

inside window/view volume, we apply another set of algorithms, which are known as hid-

den surface removal (or visible surface detection) methods. Those algorithms are discussed

in Chapter 8.

Two-dimensional line clipping algorithms are discussed in Sproull and Sutherland [1968],

Cyrus and Beck [11978], Liang and Barsky [1984], and Nicholl et al. [1987]. In Sutherland

and Hodgman [1974] and Liang and Barsky [1983], basic polygon-clipping methods are pre-

sented.Weiler and Atherton [1977] and Weiler [1980] contain discussions on clipping arbitrarily

shaped polygons with respect to arbitrarily shaped polygonal clipping windows. Weiler and

Atherton [1977], Weiler [1980], Cyrus and Beck [1978], and Liang and Barsky [1984] also

describe 3D viewing and clipping algorithms. Blinn and Newell [1978] presents homogeneous-

coordinate clipping. The Graphics Gems book series (Glassner [1990], Arvo [1991], Kirk

[1992], Heckbert [1994], and Paeth [1995]) contain various programming techniques for

3D viewing.

BIBLIOGRAPHIC NOTE

KEY TERMS

Clipping – the process of eliminating objects fully or partially that lie outside a predefined region

Clipping window – the predefined region with respect to which clipping is performed

Cohen–Sutherland line clipping – an algorithm used to perform line clipping



i

i

“Chapter-7” — 2015/9/15 — 9:37 — page 147 — #18
i

i

i

i

i

i

Clipping 147

Fill area clipping – clipping procedure for fill area

Fill-area – an enclosed region in space, usually of polygonal shape

Liang–Barsky line clipping – a parametric algorithm used to perform line clipping

Region codes – a coding scheme used to identify spatial regions in the Cohen–Sutherland

algorithm

Sutherland–Hodgeman algorithm – a fill area clipping procedure

Triangular mesh – representation of a polygon in terms of a set of interconnected triangles

Weiler–Atherton algorithm – a fill area clipping procedure

EXERCISES

7.1 Briefly explain the basic idea of clipping in the context of 3D graphics pipeline. In which

coordinate system does this stage work?

7.2 Write an algorithm to clip lines against window boundaries using brute force method (i.e.,

intuitively what you do). What are the maximum and minimum number of operations (both

integer and floating point) required? Give one suitable example for each case.

7.3 Consider the clipping window with vertices A(2,1), B(4,1), C(4,3), and D(2,3). Use the

Cohen–Sutherland algorithm to clip the line A(−4,−5) B(5,4) against this window (show

all intermediate steps).

7.4 Determine the maximum and minimum number of operations (both integer and floating

point) required to clip lines using the Cohen–Sutherland clipping algorithms. Give one

suitable example for each case.

7.5 Consider the clipping window and the line segment in Exercise 7.2. Use the Liang–Barsky

algorithm to clip the line (show all intermediate steps).

7.6 Answer Exercise 7.4 using the Liang–Barsky algorithm.

7.7 In light of your answer to Exercised 7.2, 7.4, and 7.6, which is the best method (among

brute force, Cohen–Sutherland, and Liang–Barsky)?

7.8 Discuss the role of the clippers in the Sutherland–Hodgman algorithm.

7.9 Write a procedure (in pseudocode) to perform inside-outside test with respect to a clipper.

Modify Algorithm 7.3 by invoking the procedure as a sub-routine.

7.10 Consider a clipping window with corner points (1,1), (5,1), (5,5), and (1,5). A square with

vertices (3,3), (7,3), (7,7),and (3,7) needs to be clipped against the window.Apply Algorithm

7.3 to perform the clipping (show all intermediate stages).

7.11 Modify Algorithm 7.1 for 3D clipping of a line with respect to the symmetric normalized view

volume.

7.12 Modify Algorithm 7.3 for 3D clipping of a polyhedron (with convex polygonal surfaces) with

respect to the symmetric normalized view volume.
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8 Hidden

Surface

Removal

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the concept of hidden surface removal in computer graphics

• Understand the two broad categories of hidden surface removal techniques—object

space method and image space method

• Get an idea about the object space method known as back face elimination

• Learn about two well-known image space methods—Z-buffer algorithm and A-buffer

algorithm

• Learn about the Painter’s algorithm, a popular hidden surface removal algorithm con-

taining elements of both the object space and image space techniques

• Get an overview of the Warnock’s algorithm, which belongs to a group of techniques

known as the area subdivision methods

• Learn about the octree method for hidden surface removal,which is another object space

method based on the octree representation

INTRODUCTION

In Chapter 7, we learnt to remove objects that are fully or partially outside the view vol-

ume. To recap, this is done using the clipping algorithms. However, sometimes, we need

to remove, either fully or partially, objects that are inside the view volume. An example is

shown in Fig. 8.1. In the figure, object B is partially blocked from the viewer by object A. For

realistic image generation, the blocked portion of B should be eliminated before the scene

is rendered. As we know, clipping algorithms cannot be used for this purpose. Instead, we

make use of another set of algorithms to do it. These algorithms are collectively known as the

hidden surface removal methods (often also called the visible surface detection methods). In

this chapter, we shall learn about these methods.

In all the methods we discuss, we shall assume a right-handed coordinate system with

the viewer looking at the scene along the negative Z direction. One important thing should

be noted: when we talk about hidden surface, we assume a specific viewing direction. This

is so since a surface hidden from a particular viewing position may not be so from another

position. Moreover, for simplicity, we shall assume only objects with polygonal surfaces.
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Y

Z

X
Object B

Object A

This surface of A

is blocked by B

View coordinate

origin

Fig. 8.1 The figure illustrates the idea of hidden surface. One surface of object A is blocked

by object B and the back surfaces of A are hidden from view. So, during rendering, these

surfaces should be removed for realistic image generation.

This is not an unrealistic assumption after all, since curved surfaces are converted to

polygonal meshes anyway.

8.1 TYPES OFMETHODS

The hidden surface removal methods are broadly of the following two types—object space

and image space methods.

Object SpaceMethods

In these algorithms, objects and parts of objects are compared to each other to determine

which surfaces are visible. The general approach can be summarized as follows:

For each object in the scene, do,

1. Determine those parts of the object whose view is unobstructed by other parts of it or any

other object with respect to the viewing specification.

2. Render those parts with the object color.

As you can see, such methods work before projection and have both advantages and dis-

advantages. On the plus side, they are device-independent and work for any resolution.

However, step 1 is computation-intensive. Depending on the complexity of the scene and

the hardware resources available, the methods can even become infeasible. Usually, such

methods are suitable for simple scenes with small number of objects.

Image SpaceMethods

In such an approach, visibility is decided point-by-point at each pixel position on the

projection plane. All such methods perform the following steps.

For each pixel on the screen, do,

1. Determine objects closest to the viewer that are pierced by the projector through the pixel.

2. Draw the pixel with the object color.
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Clearly, such methods work after the surfaces are projected and rasterized (i.e.,

mapped to pixels). The computations involved are usually less, although the methods

depend on the display resolution. A change in resolution requires recomputation of

pixel colors.

In this chapter, we shall have a closer look-at some of the algorithms belonging to both

these classes.

8.2 APPLICATION OF COHERENCE

As the general algorithms of the two classes of methods show, hidden surface elim-

ination is a computationally intensive process. Therefore, it is natural that we try to

reduce computations. One way to do this is to use the coherence properties. Here,

we exploit the local similarities, that is, making use of the results calculated for one

part of the scene or image for the other nearby parts. There are several types of

coherences.

In object coherence, we can check for visibility of an object with respect to another by

comparing its circumscribing solids (which are usually of simple forms such as sphere or

cube). Only if the solids overlap, we go for further processing.

In face coherence, surface properties computed for one part of a surface can be

applied to adjacent parts of the same surface. For example, if the surface is small,

we can sometimes assume that the surface is invisible to a viewer if one part of it is

invisible.

Such coherence checking can be performed for edges also. The edge coherence indicates

that the visibility of an edge changes only when it crosses another edge. Therefore, if one

segment of a non-intersecting edge is visible, we determine without further calculation that

the entire edge is also visible.

The scan line coherence states that a line or surface segment visible in one scan line is

also likely to be visible in the adjacent scan lines. Therefore, we need not perform visibility

computations for every scan line.

In many cases, a group of adjacent pixels in an image is often found to be covered by the

same visible object. This is known as the area and span coherence, which is based on the

assumption that a small enough region of pixels will most likely lie within a single poly-

gon. This reduces computation effort in searching for those polygons which contain a given

screen area (region of pixels).

The depth coherence tells us that the depth of the adjacent parts of the same surface are

similar, which is very useful in determining the visibility of adjacent parts.

Finally, we have the frame coherence which implies that pictures of the same scene at

successive points in time are likely to be similar, despite small changes in objects and view-

point, except near the edges of moving objects. Consequently, visibility computations need

not be performed for every scene rendered on the screen.

Such properties are used in one form or the other in most of the hidden surface removal

methods. As we mentioned, they reduce computations to a good extent. In addition, there

is another method called back face elimination, which is very simple and eliminates a large

number of hidden surfaces.
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8.3 BACK FACE ELIMINATION

For a scene consisting of polyhedrons, back face elimination is the simplest way of removing

a large number of hidden surfaces. As the name suggests, the objective of this method is to

detect and eliminate surfaces that are on the back side of objects with respect to the viewer.

The process is simple and consists of the following steps.

1. From the surface vertices, determine the normal for each surface (for calculation of

normal vectors, see Appendix A). Let ENi = (a, b, c) be the normal vector of the ith

surface.

2. If c < 0, the surface cannot be seen (i.e., it is a back face and should be eliminated). Oth-

erwise, if c = 0, then the viewing vector grazes the surface. In other words, the surface

cannot be seen and should be eliminated. Otherwise, retain the surface (i.e., if c > 0).

3. Perform steps 1 and 2 for all surfaces.

Let us understand the idea with an example. Consider the polyhedron of Fig. 8.2, with the

vertex coordinates given. As we can see, there are four surfaces, which we can represent as a

list S = [ACB, ADB, DCB, ADC]. For each of these surfaces, we calculate the z component

of the surface normal. Let us start with ACB. The z component of the normal is −12 (for

details of calculation, see Appendix A). Since this is less than 0, the surface ACB is not vis-

ible. Similarly, for the surfaces ADB, DCB, and ADC, we calculate the z components of the

surface normals to be −4, 4, and 2, respectively. Note that the two surfaces DCB and ADC

have the z component of the surface normal greater than 0. Hence, these two are the visible

surfaces.

Y

Z

X

B(2, 3, 6)

D(3, 2, 2)
C(6, 1, 4)

A(4, 5, 4)

Viewing direction (−Z axis)

Fig. 8.2 Illustration of the back face elimination method

Since the method works on surfaces, this is an object space method. Using this simple

method, about half of the surfaces in a scene can be eliminated. However, note that the

method does not consider obscuring of a surface by other objects in the scene. For such situ-

ations, we need to apply other algorithms (in conjunction with this method), as we shall see

next.

8.4 DEPTH (Z) BUFFER ALGORITHM

The depth (Z) buffer algorithm is an image space method, in which the comparisons are done

at the pixel level. We assume the presence of an extra storage, called the depth-buffer (also
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called z-buffer). Its size is the same as that of the frame buffer (i.e., one storage for each

pixel). As we assume canonical volumes, we know that the depth of any point within the

surface cannot exceed the normalized range; hence, we can fix the size of the depth-buffer

(number of bits per pixel).

The idea of the method is simple (we assume that 0 ≤ depth ≤ 1): at the begin-

ning, we initialize the depth-buffer locations with 1.0 (the maximum depth value) and

the frame buffer locations with the value corresponding to the background color. Then,

we process each surface of the scene at a time. For each projected pixel position (i, j)

of the surface s, we calculate the depth of the point in 3D ds
ij. Then, we compare ds

ij

value with the corresponding entry in the depth-buffer (i.e., (i, j)th depth-buffer value

DBij). If ds
ij < DBij, we set DBij = ds

ij and the surface color value is set to the

corresponding location in the frame buffer. The process is repeated for all projected

points of the surface and for all surfaces. The pseudocode of the method is shown

in Algorithm 8.1.

Depth-buffer algorithm

1: Input: Depth-buffer DB[][] initialized to 1.0, frame buffer FB[][] initialized to background color

value, list of surfaces S, list of projected points for each surface.

2: Output: DB[][] and FB[][] with appropriate values.

3: for each surface in S do

4: for each projected pixel position of the surface i, j, starting from the top-leftmost projected pixel

position do

5: Calculate depth d of the projected point on the surface.

6: if d <DB[i][j] then

7: Set DB[i][j]=d

8: Set FB[i][j]=surface color

9: end if

10: end for

11: end for

Algorithm 8.1

We can follow an iterative procedure to calculate the depth of a surface point. We can repre-

sent a planar surface with its equation ax+ by+ cz+ d = 0, where a, b, c, and d are surface

constants. Thus, depth of any point on the surface is represented as z =
−ax − by − d

c
.

Since we are assuming a canonical view volume, all projections are parallel. Thus, a point

(x, y, z) is projected to the point (x, y) on the view plane. Now, consider a projected pixel

(i, j) of the surface. Then, depth of the original surface point is z =
−ai − bj − d

c
. As we

progress along the same scan line, the next pixel is at (i + 1, j). Thus, the depth of the

corresponding surface point is z′ =
−a(i + 1) − bj − d

c
=

−ai − bj − d

c
−

a

c
= z −

a

c
.

Hence, along the same scan line, we can calculate the depth of consecutive surface pixels

by adding a constant term (−
a

c
) from the current depth value. We can perform similar iter-

ations across scan lines also. Assume a point (x, y) on an edge of the projected surface. If
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we go down to the next scan line, the x value of the edge point will be x′ = x −
1

m
where

m 6= 0 is the slope of the edge. The y value also becomes y− 1. Hence, depth of that point is

z′ =
−a(x − 1

m
) − b(y − 1) − d

c
. Rearranging, we get z′ = z +

a
m
+ b

c
. In other words, the

depth of the starting x position of the projected points on a scan line can be found by adding

a constant term to the depth of the starting x position of the previous line (m 6= 0). The idea

is illustrated in Fig. 8.3 with the pseudocode shown in Algorithm 8.2.

x x + 1

z″ = z′ −
a
c

z′ = z +
c

a

z

b+
m

Topmost scan line

for the surface

y th scan line

(y  − 1)th scan line

Fig. 8.3 Illustration of the iterative depth calculation procedure

Iterative depth calculation

1: Input: Plane constants a, b, c, d

2: Output: Depth values of the projected surface points stored in DV[][]

3: Initialize x = leftmost projected point, y = topmost scan line, z value of the leftmost edge point

z′ = 0, constants c1 = −
a

c
, c2 =

a
m
+ b

c
.

4: Compute depth of the projected surface point at (x, y): z =
−ax − by − d

c
5: Set z′ = z

6: for y = topmost scan line to the lowermost scan line do

7: Set DV[leftmost edge pixel][y] = z

8: for x = (leftmost edge pixel + 1) to rightmost edge pixel do

9: z = z + c1

10: Set DV[x][y] = z

11: end for

12: Set z = z′ + c2, z′ = z

13: end for

Algorithm 8.2

Let us try to understand Algorithm 8.1 in terms of a numerical example. For simplicity,

we shall assume an arbitrary (that means, the coordinate extents are not normalized) parallel

view volume. In that case, we shall initialize depth-buffer with a very large value (let us

denote that by the symbol ∞).
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Assume there are two triangular surfaces s1 and s2 in the view voloume. The vertices of s1 are

[(0,0,6), (6,0,0), (0,6,0)] and that of s2 are [(2,0,6), (6,0,6), (4,4,0)]. Since we are assuming parallel

projection, the projected vertices of s1 on the view plane are [(0,0), (6,0), (0,6)] (simply drop the z

coordinate value). Similarly, for s2, the projected vertices are [(2,0), (6,0), (4,4)]. The situation is

depicted in Fig. 8.4.

Y

2 6

6

(0, 0)
(3, 1)

(4, 4)

X

Fig. 8.4 The two surfaces after their projection

Solution Let us follow the steps of the algorithm to determine the color of the pixel (3,1). Assume

that cl1 and cl2 are the colors of the surfaces s1 and s2, respectively and the background color is bg.

After initialization, the depth-buffer value DB[3][1]= ∞ and the frame buffer value FB[3][1]=bg.

We will process the surfaces one at a time in the order s1 followed by s2.

From the vertices, we can determine the surface equation of s1 as x + y + z − 6 = 0 (see

Appendix A for details). Using the surface equation, we first determine the depth of the leftmost

projected surface pixel on the topmost scan line. In our case, the pixel is (0,6) with a depth of

z =
−1.0 − 1.6 − (−6)

1
= 0. Since this is the only point on the topmost scan line, we move

to the next scan line below (y = 5). Using iterative method, we determine the depth of the

leftmost projected pixel on this scan line (0,5) to be z′ = z +

a
m
+ b

c
. However, note that we

have the slope of the left edge m = ∞. Hence, we set
a

m
= 0. Therefore, z′ = 0 +

1

1
= 1.

The algorithm next computes depth and determines the color values of the pixel along the scan

line y = 5 till it reaches the right edge. At that point, it goes to the next scan line down

(y = 4). For brevity, we will skip these steps and go to the scan line y = 1, as our point of

interest is (3,1).

Following the iterative procedure across scan lines, we compute the depth of the left most pro-

jected surface point (0,1) as z = 5 (check for yourself). We now move along the scan line to the

next projected pixel (1,1). Its depth can be iteratively computed as z = z + (−
a

c
) = 5 − 1 = 4.

Similarly, the depth of the next pixel (2,1) is z = 4 − 1 = 3. In this way, we calculate depth of s1

at (3,1) as z = 3 − 1 = 2. As you can see, this depth value at (3,1) is less than DB[3][1], which is

∞. Hence, we set DB[3][1]=2 and FB[3][1]= cl1.

Example 8.1
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Afterwards, the other projected points of s1 are computed in a likewise manner, till the rightmost

edge point on the lowermost scan line. However, we shall skip those steps for brevity and move to

the processing of the next surface.

From the vertices of s2, we derive the surface equation as 3y + 2z − 12 = 0 (see Appendix A

for details). The projected point on the topmost scan line is (4,4). Therefore, depth at this point is

z =
−3.4 − (−12)

2
= 0. Going down the scan lines (skipping the pixel processing along the scan

lines for brevity, as before), we reach y = 1. Note that the slope of the left edge of the projected

surface is m = 2. We can calculate the left-most projected point on y = 1 iteratively based on the

fact that the x-coordinate of the intersection point of the line with slope m and the (y − 1)th scan

line is x −
1

m
, if the x-coordinate of the intersection point of the same line with the yth scan line is

x. In this way, we compute x = 2.5 for y = 1. In other words, the leftmost projected point of s2 on

y = 1 is (2.5,1). Using the iterative procedure for depth calculation across scan line (with z = 0

at y = 4), we compute depth at this point to be z = 4.5 (check for yourself). Next, we apply the

iterative depth calculation along the scan line to determine depth of the projected point (3,1) (the

very next projected pixel) to be z = 4.5.

Note that z = 4.5 > DB[3][1], which is having the value 2 after the processing of s1. There-

fore, the DB value and the corresponding FB value (which is cl1) is not changed. The algorithm

processes all the other pixels along y = 1 till the right edge in a likewise manner and the pixels for

y = 0. However, as before we skip those calculations for brevity. Thus, at the end of processing

the two surfaces, we shall have DB[3][1]=2 and FB[3][1]= cl1.

8.5 A-BUFFER ALGORITHM

In the depth-buffer algorithm, a pixel can have only one surface color. In other words, from

any given viewing position, only one surface is visible. This is alright if we are dealing with

opaque surfaces only. However, as we know, if the scene contains transparent surfaces vis-

ible from a pixel position, the pixel color is a combination of the surface color as well as

contributions from the surfaces behind (see Chapter 4). Since in the depth-buffer method,

we have only one location to store depth value for each pixel (the depth buffer), we cannot

store all the surfaces contributing to the color value for a transparent surface simultaneously.

The A-buffer method is an attempt to overcome this limitation of the depth-buffer

algorithm. The ‘A’ in the A-buffer method stands for accumulation. The algorithm works

in the following way: as before, we have access to a depth-buffer although we now call

it A-buffer. Each location of the A-buffer corresponds to a pixel position just like a depth

buffer. However, unlike before, each position in the buffer is not a single field of depth value.

Instead, it can reference a linked list of surfaces. There are the following two fields at each

A-buffer location.

1. The depth field as in the depth-buffer. This field can store a real-number value (positive,

negative, or zero).

2. The surface data field. This is the modification to the depth-buffer. It contains various

surface data or a pointer to the next node in a linked list data structure.
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The surface data includes the following:

1. RGB intensity components

2. Opacity factor value (indicating percent of transparency)

3. Depth

4. Surface identities

Depending on the value stored at the depth field of the A-buffer, we will be able to deter-

mine if the pixel color comes from a single surface (i.e., opaque surface) or a combination

of multiple surface colors (i.e., a transparent surface is visible from the pixel position). The

convention usually followed is this: if the depth field stores a non-negative value, the number

indicates the depth of an opaque surface. The surface data field contains various informa-

tion related to that surface. However, if the depth field contains a negative value, the visible

surface is transparent. In that case, the surface data field contains a pointer to a linked list

of data of all surfaces that contribute to the surface color. The two situations are shown

schematically in Fig. 8.5 for illustration. The scenario when depth of the visible surface is

non-negative is shown in Fig. 8.5(a). The case for a transparent visible surface is shown in

Fig. 8.5(b).

depth ≥ 0
Surface

data

Surface 1

data
depth ≥ 0

Surface 2

data

(a)

(b)

Fig. 8.5 The figure illustrates the organization of an A-buffer location for the two possible

cases. In (a), organization for an opaque visible surface is shown. The case for a transparent

visible surface is shown in (b).

8.6 DEPTH SORTING (PAINTER’S) ALGORITHM

As we noted before, back face elimination is an object space method, whereas the depth-

buffer algorithm is performed in image space. In this section, we shall learn about the depth

sorting algorithm that works at both the image and object spaces. The algorithm is often

called the painter’s algorithm, as it tries to simulate the way a painter draws a scene.

There are two basic steps in the algorithm: first, we sort the surfaces present in the

scene on the basis of their depth (from the view plane). In order to do that, we deter-

mine the maximum and minimum depths of each surface. The list is created based on

the maximum depth. Let us denote the list by S = {s1, s2, · · · sn} where si denotes the

ith surface and depth(si)<depth(si+1). Next, we render the surface on the screen one at a

time starting with the surface having maximum depth (i.e., sn in S) to the surface with the

lowest depth.

During rendering of each surface si, we compare it with all the other surfaces of S to

see if there is any depth overlap (i.e., the minimum depth of one surface is greater than the
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maximum depth of the other surface, see Fig. 8.6). If no overlap is found, we render the

surface and remove it from S. Otherwise, we perform the following checks.

Surface 2

Surface 1

Z

Zmax Zmax

Zmax

Zmax

Zmin

Zmin
Zmin

Zmin

Z

XX

Fig. 8.6 The figure illustrates the idea of depth overlap. No depth overlap between the two

surface is there on the left figure whereas in the right figure, the surfaces overlap.

1. The bounding rectangles of the two surfaces do not overlap.

2. Surface si is completely behind the overlapping surface relative to the viewing position.

3. The overlapping surface is completely in front of si relative to the viewing position.

4. The boundary edge projections of the two surfaces onto the view plane do not overlap.

The first check is true if there is no overlap in the x and y coordinate extents of the two

surfaces. If either of these coordinates overlap, then the first condition fails. Figure 8.7 illus-

trates the idea for the case where there is an overlap of the bounding rectangles along the

x direction. In order to check for the second condition in this list, we need to determine

the plane equation of the overlapping surface (the plane normal should point towards the

viewer). Next, we check all the vertices of si with the equation. If for all the vertices of si,

the plane equation returns a value < 0, si is behind the overlapping surface. Otherwise, the

second condition fails. The idea is illustrated in Fig. 8.8. The third condition can be checked

similarly with the plane equation of si and the vertices of the overlapping surface (for all

Surface 1

Surface 2

Z

Zmax

Xmax Xmax

Zmax

X

Zmin

XminXmin

Zmin

Fig. 8.7 The figure illustrates the idea of bounding rectangle overlap of two surfaces along

the x axis
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Z

X

Surface 1

Surface 2

Zmax

Zmax

Zmin

Zmin

Fig. 8.8 An example showing one surface (surface 1) completely behind the other surface,

viewed along the -z direction

vertices, the equation should return positive value). Figure 8.9 depicts the situation for two

surfaces. In order to check the final condition, we need to have the set of projected pixels

for each surface and then check if there are any common pixels in the two sets (se Fig. 8.10

for illustration). As you can see, the first and the last checks are performed at the pixel level,

whereas the other two checks are performed at the object level. Hence, the depth sorting

algorithm incorporates elements of both the object space and image space methods.

The tests are performed following the order as in our preceeding discussion. As soon

as one of the checks is true, we move to check for overlap with the next surface of the list.

X

Z

Surface 1

Surface 2

Zmax

Zmax

Zmin

Zmin

Fig. 8.9 Illustration of one surface (surface 2) completely in front of surface 1, although

surface 1 is not completely behind surface 2

X

Y

Surface 1

Surface 2

Bounding box

Fig. 8.10 An example where the projected surfaces do not overlap although their bounding

rectangles do
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If all tests fail, we swap the order of the surfaces in the list (called reordering) and stop. Then,

we restart the whole process again. The steps of the depth sorting method, in pseudocode,

are shown in Algorithm 8.3.

Painter’s Algorithm

1: Input: List of surfaces S = {s1, s2, · · · sn}, in sorted order (of increasing maximum depth value).

2: Output: Final frame buffer values.

3: Set a flag Reorder=OFF

4: repeat

5: Set s = sn (i.e., the last element of S)

6: for for each surface si in S where 1 ≤ i < n do

7: if zmin(s) < zmax(si) (that means, there is depth overlap) then

8: if (bounding rectangles of the two surfaces on the view plane do not overlap then

9: Set i = i + 1 and continue loop.

10: else if s is completely behind si then

11: Set i = i + 1 and continue loop

12: else if si is completely in front of s then

13: Set i = i + 1 and continue loop

14: else if projections of s and si do not overlap then

15: Set i = i + 1 and continue loop

16: else

17: Swap the positions of s and si in S

18: Set Reorder = ON

19: Exit inner loop

20: end if

21: end if

22: end for

23: if Reorder = OFF then

24: Invoke rendering routine for s

25: Set S = S − s

26: else

27: Set Reorder = OFF

28: end if

29: until S = NULL

Algorithm 8.3

Sometimes, there are surfaces that intersect each other. As an example, consider Fig. 8.11,

in which the two surfaces intersect. As a result, one part of surface 1 is at a depth larger than

surface 2, although the other part has lesser depth. Therefore, we may initially keep surface 1

after surface 2 in the sorted list. However, since the conditions fail (check for yourself), we

have to reorder them (bring surface 1 in front of surface 2 in the list). As you can check, the

conditions shall fail again and we have to reorder again. This will go on in an infinite loop

and Algorithm 8.3 will loop forever.

In order to avoid such situations, we can use an extra flag (a Boolean variable) for each

surface. If a surface is reordered, the corresponding flag will be set on. If the surface needs

to be reordered next time, we shall do the following.
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1. Divide the surface along the intersection line of the two surfaces.

2. Add the two new surfaces in the sorted list, at appropriate positions.

X

Z

Surface 1

Surface 2

Intersection line

Fig. 8.11 Two surfaces that intersect each other. Algorithm 8.3 should be modified to take

care of such cases

8.7 WARNOCK’S ALGORITHM

There is a group of hidden surface removal techniques collectively known as the area sub-

division methods. All these methods work on the same general idea: we first consider an

area of the projected image. If we can determine which (polygonal) surfaces are visible

in the area, we assign those surface colors to the area. Otherwise, we recursively subdi-

vide the area into smaller regions and apply the same decision logic on the subregions. The

Warnock’s algorithm is one of the earliest among all the subdivision methods developed for

hidden surface removal. The algorithm works as follows.

First, we subdivide a screen area into four equal squares. Then, we check for visibility

in each square to determine the color of the pixels contained in the (square) region. The

algorithm proceeds as per the following cases.

1. The current square region being checked does not contain any surface. Thus, we do not

subdivide the region any further and assign background color to the pixels contained in it.

2. The nearest surface completely overlaps the region under consideration. In that case, the

square is not subdivided further. We assign the surface color to the region.

3. None of these. We recursively divide the region into four subregions and repeat the afore-

mentioned checks. The recursion stops if either of the cases is met or the region size

becomes equal to the pixel size.

The steps of the Warnock’s algorithm are shown in Algorithm 8.4 (in pseudocode).

Let us consider Fig. 8.12 to understand the steps of Algorithm 8.4. In the figure, there

is a surface occupying a region of the screen (the shaded region). One vertex of the polyg-

onal surface is on the center of the screen. We shall execute the steps of Algorithm 8.4 to

determine the color of the screen where the surface is.

We make the first call to the algorithm with the whole screen region as input. The

algorithm then creates four subregions of equal size (denoted by P1, P2, P3, and P4 in the

figure) and checks for visibility of the surface for each subregion inside the loop. We first

check the region P1. Since it does not contain any surface, background color is assigned to
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Warnock’s Algorithm

1: Input: The screen region

2: function Warnock (Projected region P)

3: Divide the input region P into four equal sized subregions P1, P2, P3 and P4

4: for each subregion Pi do

5: if there is no surface in Pi or Pi equals the pixel size then

6: Assign background color to Pi

7: else if the nearest surface completely overlaps Pi then

8: Assign the surface color to Pi

9: else

10: Warnock (Pi)

11: end if

12: end for

Algorithm 8.4

P1

P4

P31
P313 P314

P34P33

P32

P312

P2

Subregion P311 overlapped by the surface

P3

Fig. 8.12 Example illustrating Warnock’s algorithm

this region. Next, we check the region P2. Again, no surface is contained within this region.

So, we assign background color to the region and proceed to the next region P3.

We determine that P3 contains the surface. However, it is not completely overlapped by

the surface. Therefore, we go for dividing the region into four subregions of equal size (the

recursive call in the Algorithm 8.4, line 10). The four subregions are denoted by P31, P32,

P33, and P34 in the figure. For each of these subregions, we perform the checks again.

We find that the subregion P31 contains the surface. However, the surface does not com-

pletely overlap P31. Therefore, we go for subdividing the region. The four subregions of

P31 are denoted as P311, P312, P313, and P314. We then check each of these subregions for

surface visibility.

Since the surface lies in the subregion P311 and is completely overlapping it, we assign

the surface color to the subregion P311. The other three subregions of P31 do not contain
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any surface. Therefore, all these subregions are assigned background color. This completes

our processing of the subregion P31.

We then retrace the recursive step and go for checking the other three subregions of the

region P3, namely P32, P33, and P34. Since none of them contains any surface, we assign

background color to them and complete our processing of the subregion P3.

We then return from the recursive step to check the remaining subregion P4 of the screen.

We find that the region contains no surface. Therefore, background color is assigned to it.

Since all the regions have been checked, the algorithm stops.

8.8 OCTREE METHODS

The depth-buffer algorithm is an image space method while the depth sorting algorithm is

a combination of both image and object space methods. There are several other algorithms

available for hidden surface removal, which belong to either of the methods. In the follow-

ing, we discuss another hidden surface removal technique based on the octree representation

of objects. As may be clear to you, the method depends on a particular object representation

technique, namely the octree representation (see Chapter 2). Therefore, we categorize it as

an object space method. Note that the method assumes a volumetric (or interior) represen-

tation of objects, while in the back face elimination or depth sorting methods, we assumed

that objects are represented by their bounding surfaces (exterior representation).

As you may recall, in octree representation, we first divide a 3D space into eight regions

(quadrants). Each region is then subdivided into eight subregions. The process continues

in a recursion till we reach a predefined region size (usually unit cubes, sometimes called

voxels, see Chapter 2). After the division, we get an octree (a tree with each node having

eight children). For simplicity, we shall assume a cubical region to start with and that the

divisions are performed till we reach voxels. In such case, the leaf nodes (voxels) of the

octree stores attributes of the object associated with it (we shall assume only color as the

object attribute for simplicity). Thus, the voxels with attributes define objects in the scene.

In terms of this simplistic representation, let us try to understand the octree methods for

hidden surface removal.

During the creation of the octree representation, we label each of the eight subregions of

a region according to its position with respect to the viewer. Refer to Fig. 8.13. With respect

to the viewer position, we may number the eight subregions of a region as {1,2,3,4} denot-

ing front four quadrants and {5,6,7,8} denoting the four back quandrants. We follow such

convention in each step of the recursive subdivision of a region. When we reach the leaf

5

8
1 2

4 3

7

Viewing direction

6

Fig. 8.13 The naming of regions with respect to a viewer in an octree method
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nodes (i.e., voxels), each voxel shall have the information about its position with respect to

the viewer, along with the color of the object associated with it.

In order to render the scene represented by the octree, we project the voxels on the view

plane in a front-to-back manner. In other words, we start with the voxels nearest to the

viewer, then move to the next nearest voxels, and so on. It is easy to see that the terms

such as voxels nearest to the viewer indicates a voxel grid (having voxels at the same dis-

tance from the viewer) with a one-to-one correspondance to the pixel grid on the view plane

(since both the grid sizes are same). When a color is encountered in a voxel (of a particular

grid), the corresponding pixel in the frame buffer is painted only if no previous color has

been loaded into the same pixel position. This we can achieve by initially assuming that the

frame buffer locations contains 0 (no color). A pseudocode of the method (for our simplest

octree representation) is shown in Algorithm 8.5.

Octree method of hidden surface removal

1: Input: The set of octree leaf nodes (voxels) OCT with each voxel having two attributes (distance from

the viewer, color). We assume that the nearest voxel to viewer has a distance 0.

2: Output: Frame buffer with appropriate color in its locations

3: Set all frame buffer locations to 0 (to denote no color)

4: Set distance = 0

5: repeat

6: for From the leftmost to the rightmost element of OCT do

7: Take an element of OCT (denoted by v)

8: if distance of v from viewer = distance then

9: if corresponding frame buffer location has a value 0 then

10: Set the voxel color as the corresponding frame buffer value

11: end if

12: end if

13: Set OCT = OCT − v

14: end for

15: Set distance = distance + 1

16: until OCT = NULL

Algorithm 8.5

Let us consider an example to illustrate the idea of our simplistic octree method for hidden surface

removal. Assume that we have a display device with a 4 × 4 pixel grid. On this display, we wish

to project a scene enclosed in a cubical region with each side = 4 unit. Note that, we shall have

two levels of recursion to create the octree representation of the scene till we reach the voxel level.

In the first recursion, we create eight regions from the original volume given, each region having

a side length = 2 units. In the next level of recursion, we divide each of the subregions further,

so that we reach the voxel level. The divisions are illustrated in Fig. 8.14, showing two levels of

recursion for one quadrant. Other quadrants are divided similarly.

Example 8.2
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5
5

8

8

1
1 2

4 3
2

4 3

7

7

Viewing direction

6

6

Fig. 8.14 Octree of Example 8.2

Note how the naming convention is used. In the first level of recursion, we named the quadrants

as we discussed before ({1,2,3,4} are the front regions while {5,6,7,8} are the back regions with

respect to the viewer). In the second level of recursion, we have done the same thing. Thus, after

the recursion ends, each voxel is associated with two numbers in the form {first level number, sec-

ond level number}. For example, the voxels shown in Fig. 8.14 will have numbers as {1,1}, {1,2},

{1,3}, {1,4}, {1,5}, {1,6}, {1,7} and {1,8}.

As you can see, from these numbers, we can make out the relative position of the voxels with

respect to the viewer. Hence, we can easily determine the voxel grids (i.e., voxels at the same

distance from the viewer). There are four such grids as follows:

Grid 1: {1,1}, {1,2}, {1,3}, {1,4}, {2,1}, {2,2}, {2,3}, {2,4}, {3,1}, {3,2}, {3,3}, {3,4}, {4,1},

{4,2}, {4,3}, and {4,4} [distance = 0 from the viewer]

Grid 2: {1,5}, {1,6}, {1,7}, {1,8}, {2,5}, {2,6}, {2,7}, {2,8}, {3,5}, {3,6}, {3,7}, {3,8}, {4,5},

{4,6}, {4,7}, and {4,8} [distance = 1 from the viewer]

Grid 3: {5,1}, {5,2}, {5,3}, {5,4}, {6,1}, {6,2}, {6,3}, {6,4}, {7,1}, {7,2}, {7,3}, {7,4}, {8,1},

{8,2}, {8,3}, and {8,4} [distance = 2 from the viewer]

Grid 4: {5,5}, {5,6}, {5,7}, {5,8}, {6,5}, {6,6}, {6,7}, {6,8}, {7,5}, {7,6}, {7,7}, {7,8}, {8,5},

{8,6}, {8,7}, and {8,8} [distance = 3 from the viewer]

It is also easy to define a mapping between voxel and pixel grids. For example, we may define

that a voxel with location (i,j) in a grid maps to the pixel (i,j) in the pixel grid.

Now, let us try to execute the steps of Algorithm 8.5. Initially, all pixels have a color value 0

and OCT contains all the voxels of the four grids. Since the distance of the voxels in grid 1 is 0,

all these voxels will be processed in the inner loop first. During the processing of each voxel, its

color (if any) will be set as the color of the corresponding frame buffer location. Afterwards, the

voxel will be removed from the list of voxels in OCT. Thus, after the first round of processing of

the inner loop, OCT shall contain voxels of grids 2, 3 and 4.

In a similar manner, voxels of grid 2 will be processed during the second round of inner loop

execution and the frame buffer colors modified appropriately (i.e., if a frame buffer location already

contains a non zero color value and the corresponding voxel in grid 2 has a color, the frame buffer

color value remains unchanged. Otherwise, the current voxel color will replace the frame buffer

color) . After the second round of inner loop execution, OCT shall contain grid 3 and 4 voxels

and the inner loop executes third time. The process continues in this way till the fourth round exe-

cution of the inner loop is over, after which we will have OCT = NULL and the execution of the

algorithm stops.
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SUMMARY

In this chapter, we learnt about the idea of hidden surface removal in a scene. The objective is

to eliminate surfaces that are invisible to a viewer, with respect to a viewing positions. We learnt

about the two broad types of methods—image space and object space methods. The former

works at the pixel level while the later works at the level of object representations.

In order to reduce computations, coherence properties are used in conjunction with the

algorithms. We mentioned seven such properties, namely (a) object coherence, (b) face coher-

ence, (c) edge coherence, (d) scan line coherence, (e) area and span coherence, (f) depth

coherence, and (g) frame coherence. We discussed the ideas in brief. In addition to these, we

also saw how the back face elimination method provides a simple and efficient way for removal

of a large number of hidden surfaces.

Among the many hidden surface removal algorithms available, we discussed three in detail

along with illustrative examples. The first algorithm, namely the depth-buffer algorithm, is one of

the most popular algorithms which works in the image space. The depth sorting algorithm that

we discussed next works at both the image and object space.As we saw, it is more complex and

computation-intensive compared to the depth-buffer algorithm. The third algorithm, namely the

octree method, is an object space method that is based on the octree representation of objects.

We illustrated the idea of octree methods considering few simplisitic assumptions.

In the next chapter,we will discuss the final stage of a 3D graphics pipeline,namely rendering.

There are a large number of hidden surface removal techniques. We have discussed a few

of those. More techniques can be found in Elber and Cohen [1990], Franklin and Kankanhalli

[1990], Segal [1990], and Naylor et al. [1990]. A well-known hidden surface removal technique

is the A-buffer method. Works on this are presented in Cook et al. [1987], Haeberli and Akeley

[1990], and Shilling and Strasser [1993]. Hidden surface removal is also important in three-

dimensional line drawings. For curved surfaces, contour plots are displayed. Such contouring

techniques are summarized in Earnshaw [1985]. For various programming techniques for hid-

den surface detection and removal, the graphics gems book series can be referred (Glassner

[1990], Arvo [1991], Kirk [1992], Heckbert [1994], and Paeth [1995]).

BIBLIOGRAPHIC NOTE

KEY TERMS

(A)ccumulation buffer – a data structure to store depth and associated information for each

surface to which a pixel belongs

A-buffer method – an image space technique for hidden surface removal that works with

transparent surfaces also

Area subdivision – recursive subdivision of the projected area of a surface

Back face elimination – an object space method for hidden surface removal

Coherence – the property by which we can apply some results calculated for one part of a scene

or image to the other parts

Depth (Z) buffer algorithm – an image space method for hidden surface removal

Depth-buffer – a data structure to store the depth information of each pixel

Depth coherence – the depth of nearby parts of a surface is similar

Depth overlap – the minimum depth of one surface is greater than the maximum depth of another

surface
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Depth sorting (Painter’s) algorithm – a hidden surface removal technique that combines

elements of both object space and image space methods

Face coherence – the property by which we can check visibility of one part of a surface by

checking its properties at other parts

Frame coherence – pictures of the successive frames are likely to be similar

Hidden surfaces – object surfaces that are hidden with respect to a particular viewing position

Image space method – hidden surface removal techniques that work with the pixel level

projections of object surfaces

Object coherence – determining visibility of an object surface with respect to nearby object

surfaces by comparing their bounding volumes

Object space methods – hidden surface removal techniques that work with the objects, rather

than their projections on the screen.

Octree method – an object space method for hidden surface removal

Scan line coherence – a line or surface segment visible in one scan line is also likely to be visible

in the adjacent scan line

Visible surfaces – surfaces that are visible with respect to the viewing position

Warnock’s algorithm – the earliest area subdivision method for hidden surface removal

EXERCISES

8.1 Discuss the importance of hidden surface removal in a 3D graphics pipeline. How is it

different from clipping?

8.2 What are the broad classes of hidden surface removal methods? Describe each class in

brief along with its pros and cons.

8.3 Briefly explain the idea of coherence. Why is it useful in hidden surface removal?

8.4 In which category of methods does the depth-buffer algorithm belong to? Justify.

8.5 We have discussed the depth-buffer algorithm (Algorithm 8.1) and the iterative depth

calculation (Algorithm 8.2) separately. Write the pseudocode of an algorithm combining

the two.

8.6 The depth sorting method is said to be a hybrid of the object space and image space

methods. Why?

8.7 Why does Algorithm 8.3 fail for intersecting surfaces? Explain with a suitable example.

8.8 Modify Algorithm 8.3 to take into account intersecting surfaces.

8.9 Consider the objects mentioned in Example 8.1. Can Algorithm 8.3 be applied to these

objects or the modified algorithm you wrote to answer Example 8.8? Show the execution

of the steps of the appropriate algorithm for the objects.

8.10 Both the back face elimination and octree methods belong to the object space methods.

What is the major difference between them?

8.11 Assume that during octree creation, we named each region as illustrated in Example 8.2.

Write the pseudocode of an algorithm to determine the distance of a voxel from the viewer.

Integrate this with Algorithm 8.5.

8.12 Algorithm 8.5 assumed a simplistic octree representation. Discuss ways to improve it.



i

i

“Chapter-9” — 2015/9/15 — 9:44 — page 167 — #1
i

i

i

i

i

i

CHAPTER

9 Rendering

Learning Objectives

After going through this chapter, the students will be able to

• Understand the concept of scan conversion

• Get an overview of the issues involved in line scan conversion

• Learn about the digital differential analyser (DDA) line drawing algorithm and its

advantage over the intuitive approach

• Understand the Bresenham’s line drawing algorithm and its advantage over the DDA

algorithm

• Get an overview of the issues involved in circle scan conversion

• Learn about the mid-point algorithm for circle scan conversion

• Understand the issues and approaches for fill area scan conversion

• Learn about the seed fill, flood fill, and scan line polygon fill algorithms for fill area scan

conversion

• Get an overview of character rendering methods

• Understand the problem of aliasing in scan conversion

• Learn about the Gupta-Sproull algorithm for anti-aliasing lines

• Learn about the area sampling and supersampling approaches towards anti-aliasing

INTRODUCTION

Let us review what we have learnt so far. In a 3D graphics pipeline, we start with the def-

inition of objetcs that make up the scene. We learnt different object definition techniques.

We also learnt the various geometric transformations to put the objects in their appropriate

place in a scene. Then, we learnt about the lighting and shading models that are used to

assign colors to the objects. Subsequently, we discussed the viewing pipeline comprising

the three stages: (a) view coordinate formation, (b) projection, and (c) window-to-viewport

transformations. We also learnt various algorithms for clipping and hidden surface removal.

Thus, we now know the stages involved in transforming a 3D scene to a 2D viewport

in the device coordinate system. Note that a device coordinate system is continuous in

nature (i.e., coordinates can be any real number). However, we must use the pixel grid

to render a scene on a physical display. Clearly, pixel grids represent a discrete coordi-

nate system, where any point must have integer coordinates. Thus, we need to map the
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scene defined in the viewport (continuous coordinates) to the pixel grid (discrete coor-

dinates). The algorithms and techniques used for perfoming this mapping are the subject

matter of this chapter. These techniques are collectively known as rendering (often called

scan conversion or rasterization). In the rest of this chapter, these terms will be used

synonymously.

The most basic problem in scan conversion is to map a point from the viewport to the

pixel grid. The approach is very simple: just round off the point coordinates to their nearest

integer value. For example, consider the point P(2.6,5.1). This viewport point is mapped to

the pixel grid point P′(3,5) after rounding off the individual coordinates to their nearest inte-

gers. However, scan conversion of more complex primitives such as line and circle are not

so simple and we need more complex (and efficient) algorithms. Let us learn about those

algorithms.

9.1 SCAN CONVERSION OF A LINE SEGMENT

We know that a line segment is defined by its end points. In order to scan convert the

line segment, we need to map points on the line to the appropriate pixels. We can follow

a simple approach: first, we shall map the end points to the appropriate pixels following

the point scan conversion method (i.e., round off to nearest integer). This will give us the

starting and ending pixels for the line segment. We will then take one end point having

the lower x and y coordinate values. As we know that two pixels are seperated by a unit

distance along x- axis, we then work out the y coordinates for successive x-coordinates

differing by one. The computed y-coordinate is then mapped to its nearest integer, giv-

ing us the pixel coordinates of the point. Let us try to understand this idea in terms of

an example.

Assume we have a line segment defined by the end points A(2.1,2.3) and B(6.7,5.2). We

first convert the end points to pixels. Thus, the two end point pixels of the line segment are:

A′(2,2) and B′(7,5) (after rounding off each coordinate value to the nearest integer). Since

the coordinate values of A′ are less than those of B′, we take A′ as our starting pixel and

compute the points on the line.

First, from the end points, we compute slope (m) = 5−2
5−2

=
3
5

[we know that m =
y2−y1

x2−x1
]

and y-intercept (b) = 2 −
3
5
.2 =

4
5

[from the equation y1 = m.x1 + b]. Then, for each

x-coordinate separated by unit distance (starting from 2), we compute the y-coordinate using

the line equation y =
3
5
x + 4

5
(till we reach the other end point B′). The computation yields

the following four values of y.

y(x = 3) =
3

5
3 +

4

5
= 2.6

y(x = 4) =
3

5
4 +

4

5
= 3.2

y(x = 5) =
3

5
5 +

4

5
= 3.8

y(x = 6) =
3

5
6 +

4

5
= 4.4
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5 (7, 5)

(0, 0)
(2, 2)

Scan converted

pixel (3, 3)

Actual point on

the line(3, 2.6)

2 7

X

Y

Fig. 9.1 Simple line scan conversion—Note that the actual points on the line are scan

converted to the nearest pixels after rounding off

Thus, between A′ and B′, we obtain the four points on the line as (3,2.6), (4,3.2), (5,3.8),

and (6,4.4). Following point conversion technique, we determine the pixels for these points

as (3,3), (4,3), (5,4), and (6,4), respectively. The idea is illustrated in Fig. 9.1.

The approach is very simple. However, there are mainly two problems with this approach.

First, we need to perform the multiplication m.x. Second, we need to round off the y-

coordinates. Both of these may involve floating point operations, which are computationally

expensive. In typical graphics applications, we need to scan convert very large number of

lines within a very small time. In such cases, floating point operations make the process slow

and flickers may occur. Thus we need some better solution.

Role of slopes in line scan conversion

In the simple line scan conversion we dis-

cussed, we calculated the y-coordinate for each

x-coordinate. We could have done the other way

round also. Let us see the result for the same

example (Fig.9.1).As before,we start with the end

point A′
. This time, we calculate the x-coordinates

of successive points by increasing y by 1 (mov-

ing from one scan line to the next) based on the

equation x =
y−b
m . Therefore, we get two x val-

ues between y = 2 and y = 5 (the two end

pixel y-coordinates), unlike the four y values we

got before. The two x values are,

x(y = 3) =

3 −
4

5

3

5

= 3.7

x(y = 4) =

4 −
4

5

3

5

= 5.3

Thus, the two computed points between A′
and

B′
are (3.7,3) and (5.3,4).These two are scan con-

verted to the pixels (4,3) and (5,4). Recall that

when we computed y, we got the pixels (includ-

ing end points) (2,2), (3,3), (4,3), (5,4), (6,4), and

(7,5). However, if we calculate x for this line seg-

ment we get the pixels (2,2), (4,3), (5,4), and

(7,5). As you can see, the line segment ren-

dered with the first set of pixels is much bet-

ter compared to the second set of pixels. Thus,

we have to decide which coordinate to calculate

when.

The decision is taken based on the slope of

the line. If we have 0 ≤ m ≤ 1 or −1 ≤

m ≤ 0, we work out y-coordinates based on

x-coordinates (as we did in the example). Oth-

erwise, we compute x-coordinates based on the

y-coordinates.
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9.1.1 DDA Algorithm

DDA stands for digital differential analyser. In the DDA algorithm, we take an incremental

approach to speed up line scan conversion. In order to illustrate the working of the algorithm,

let us consider the previous example again.

Recall that there are four pixels we calculated between the two end pixels (2,2) and (7,5).

These pixels are (3,2.6), (4,3.2), (5,3.8), and (6,4.4). We know that the slope of the line

m =
3
5
= 0.6. Note that the successive y-coordinates are obtained by adding 0.6 to the

current value (i.e., (3,2.6), (4,3.2 + 0.6), (5,(3.2 + 0.6) + 0.6), and (6,((3.2 + 0.6) + 0.6)

+ 0.6). Thus, instead of computing the y-coordinate by the line equation y = m.x + b

every time, we can simply add m to the current y value (i.e., yk+1 = yk + m). In this

way, we eliminate the floating point multiplication m.x from calculation. When m > 1 or

m < −1, we compute successive x-coordinates as xk+1 = xk +
1
m

(derivation is left as

an exercise), in the process eliminating floating point operations. The algorithm is shown

in Algorithm 9.1, where RoundOff(a) is a function to round off the real number a to its

nearest integer.

Although the DDA algorithm is able to reduce some floating point operations (mul-

tiplication), it still requires floating point addition and rounding off operations. More-

over, for large line segments, the rounding off may result in pixels that are far away

from the actual line. So, it is preferable to have a more efficient algorithm for line scan

conversion.

DDA algorithm

1: Input: The two line end points (x1, y1 and x2, y2)

2: Output: Set of pixels P to render the line segment

3: Compute m =
y2−y1

x2−x1

4: if 0 ≤ m ≤ 1 or −1 ≤ m ≤ 0 then

5: Set x = x1 + 1, y = y1

6: repeat

7: y = y + m

8: RoundOff(y)

9: Add (x, y) to P

10: Set x = x + 1

11: until x < x2

12: else

13: Set x = x1, y = y1 + 1

14: repeat

15: x = x + 1
m

16: RoundOff(x)

17: Add (x, y) to P

18: Set y = y + 1

19: until y < y2

20: end if

Algorithm 9.1
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9.1.2 Bresenham’s Algorithm

The Bresenham’s algorithm is a very efficient way to scan convert a line segment. Let us

first understand the idea of the algorithm. We shall discuss the idea for line segments with

0 ≤ m ≤ 1 or −1 ≤ m ≤ 0.

Consider Fig. 9.2. As we know, in order to determine pixels, we move along the x-direction

in unit steps from the current position (xk, yk). At each of these steps, we have to choose

between the two y values yk and yk +1. Clearly, we would like to choose a pixel that is closer

to the original line. Let us denote the distances of (xk + 1, yk + 1) and (xk + 1, yk) from the

actual line by dupper and dlower, respectively (see Fig. 9.2). At xk + 1, the y-coordinate on the

line is y = m(xk + 1) + b, where m and b are the slope and y-intercept of the line segment,

respectively. Therefore, we can determine dupper and dlower as,

dupper = (yk + 1) − y = yk + 1 − m(xk + 1) − b

dlower = y − yk = m(xk + 1) + b − yk

Based on these two quantities, we can take a simple decision about the pixel closer to the

actual line, by taking the difference of the two.

dlower − dupper = 2m(xk + 1) − 2yk + 2b − 1

If the difference is less than 0, the lower pixel is closer to the line and we choose it. Oth-

erwise, we choose the upper pixel. Now, we substitute m in this expression with
△y
△x

, where

△y and △x are the differences between the end points. Rearranging, we get,

△x(dlower − dupper) = △x

(

2
△y

△x
(xk + 1) − 2yk + 2b − 1

)

= 2 △ y.xk − 2 △ x.yk + 2 △ y +△x(2b − 1)

= 2 △ y.xk − 2 △ x.yk + c

where the constant c = 2 △ y +△x(2b − 1)

X

Y

Actual point on

the line

Lower candidate pixel

(xk + 1, yk)

Upper candidate pixel

(xk + 1, yk + 1)

(xk, yk)

dupper

dlower

Fig. 9.2 The key idea of Bresenham’s line scan conversion algorithm. The algorithm

chooses one of the two candidate pixels based on the distance of the pixels from the actual

line. The decision is taken entirely based on integer calculations.
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Note that △x(dlower − dupper) can also be used to make the decision about the closeness

of the pixels to the actual line. Let us denote this by pk , a decision parameter for the kth

step. Clearly, the sign of the decision parameter will be the same as that of (dlower − dupper).

Hence, if pk < 0, the lower pixel is closer to the line and we choose it. Otherwise, we choose

the upper pixel.

At step k + 1, the decision parameter is,

pk+1 = 2 △ y.xk+1 − 2 △ x.yk+1 + c

Subtracting from pk , we get,

pk+1 − pk = 2 △ y(xk+1 − xk) − 2 △ x(yk+1 − yk)

We know that xk+1 = xk + 1. Substituting and rearranging, we get Eq. 9.1.

pk+1 = pk + 2 △ y − 2 △ x(yk+1 − yk) (9.1)

Note that in Eq. 9.1, if pk < 0, we set yk+1 = yk , otherwise we set yk+1 = yk + 1. Thus,

depending on the sign of pk , the difference (yk+1 − yk) in this expression becomes either 0

or 1. The first decision parameter at the starting point is given by p0 = 2 △ y −△x.

What is the implication of this? We are choosing pixels at each step, depending on the

sign of the decision parameter. The decision parameter is computed entirely with inte-

ger operations only. All floating point operations are eliminated. Thus, the approach is a

huge improvement, in terms of speed of computation, over the previous approaches we dis-

cussed. The pseudocode of the Bresenham’s algorithm for line scan conversion is given in

Algorithm 9.2.

Bresenham’s line drawing algorithm

1: Input: The two line end points (x1, y1 and x2, y2)

2: Output: Set of pixels P to render the line segment

3: Compute △x = x2 − x1,△y = y2 − y1, p = 2 △ y −△x

4: Set x = x1, y = y1

5: Add (x1, y1) to P

6: repeat

7: if p < 0 then

8: Set x = x + 1

9: Set p = p + 2 △ y

10: else

11: Set x = x + 1, y = y + 1

12: Set p = p + 2 △ y − 2 △ x

13: end if

14: Add (x, y) to P

15: until x < (x2 − 1)

16: Add (x2, y2) to P

Algorithm 9.2
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In order to understand Algorithm 9.2, let us execute its steps for the line segment defined by

the end points A(2,2) and B(7,5) in our previous example. Following line 3 of Algorithm 9.2,

we compute △x = 5, △y = 3, and p = 1. The two variables x and y are set to the

end point A′ as x = 2, y = 2 (line 4). Also, the end point A′ (2,2) is added to P

(line 5).

Note that p = 1 ≥ 0. Therefore, we execute the ELSE part of the loop (lines 10–12) and we get

x = 3, y = 3, p = −3. The pixel (3,3) is added to the output list P (line 14). Since x = 3 < 6 (the

loop termination condition), loop is executed again.

In the second execution of the loop, we have p = −3 < 0. Thus, the IF part (lines 7–9) is

executed and we get x = 4, y = 3 (no change), and p = 3. The pixel (4,3) is added to the output

list P. Since x = 4 < 6, the loop is executed again.

Now we have p = 3 ≥ 0. Therefore, in the third execution of the loop, the statements in the

ELSE part are executed. We get x = 5, y = 4, p = −1. The pixel (5,4) is added to the output pixel

list P. Since x = 5 < 6, the loop is executed again.

In the fourth loop execution, p = −1 < 0. Hence, the IF part is executed with the result x = 6,

y = 4 (no change), and p = 5. The pixel (6,4) is added to the output list P. As the loop termination

condition (x < 6) is no longer true (x = 6), the loop stops.

Finally, we add the other end point B′(7,5) to the output list P and the algorithm

stops.

Thus, we get the output list P = {(2, 2), (3, 3), (4, 3), (5, 4), (6, 4), (7, 5)} after the termination

of the algorithm.

Example 9.1

Algorithm 9.2 works for line segments with 0 ≤ m ≤ 1 or −1 ≤ m ≤ 0. For other line

segments, minor modification to the algorithm is needed, which is left as an exercise for the

reader.

9.2 CIRCLE SCAN CONVERSION

Similar to lines, we can also use a very simple approach to scan convert circles. Let us

consider a circle centered at origin. Assuming a radius r, the equation for the circle is

x2
+ y2

= r2. Using this equation, we can solve for y after every unit increment of x

as y = ±

√

r2 − x2. Obviously, this solution is not good as it involves inefficient compu-

tations such as square root and multiplications (remember, r need not be integer). Also,

we may need to round off computed values. Moreover, the pixels obtained may not gen-

erate a smooth circle just as in the case of lines (the gap between actual points on the

circle and choosen pixels may be large). In the following section, we discuss a much

more efficient algorithm, known as the midpoint algorithm, to scan convert circles. For

simplicity, we shall restrict our discussion to circles about origin. We shall follow an

approach similar to the previous section: first, we shall discuss the derivation of the steps

of the algorithm; then, the pseudocode of the algorithm will be presented, followed by an

illustrative example.
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9.2.1 Midpoint Algorithm

A circle about origin has an important property that we shall exploit in the algorithm—

the eight-way symmetry. We can divide a circle into eight quadrants, as shown in

Fig. 9.3. If we can determine one point on any of these quadrants, seven other points

on the circle belonging to the seven quadrants can be trivially derived, as illustrated in

Fig. 9.3. In the algorithm, we shall compute pixels for the top right eighth quadrant

(the marked quadrant of Fig. 9.3) and determine the pixels for other quadrants following

the property.

Now assume that we have just determined the pixel (xk, yk), as shown in Fig. 9.4. The

next pixel is a choice between the two pixels (xk + 1, yk) and (xk + 1, yk − 1) [note that here

we are going down the scan lines for the top right eighth quadrant, unlike the line scan con-

version where we were going up]. Clearly, the pixel that is closer to the actual circle should

be chosen. How do we decide that?

We perform some mathematical tricks here as we did for Bresenham’s line draw-

ing algorithm. We first restate the circle equation as f (x, y) = x2
+ y2

− r2.

(−x, y) (x, y)

(x, −y)

(−y, x)

(−y, −x) (y, −x)

(y, x)

Top right eighth

quadrant

(−x, −y)

Fig. 9.3 The eight way symmetry and its use to determine points on a circle centered at

origin. We compute pixels for the marked quadrant. The other pixels are determined based

on the property.

Actual point on

the line

Upper candidate pixel

(xk + 1, yk)

Lower candidate pixel

(xk + 1, yk − 1)

(xk, yk)

Midpoint

between

candidate pixels

Circle boundary

Y

X

Fig. 9.4 Idea of candidate pixels and midpoint decision variable
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The equation evaluates as follows.

f (x, y)











< 0 if the point (x, y) is inside the circle

= 0 if the point (x, y) is on the circle

> 0 if the point (x, y) is outside the circle

We evaluate this function at the midpoint of the two candidate pixels to make our decision

(see Fig. 9.4). In other words, we compute the value f (xk + 1, yk −
1
2
). Let us call this the

decision variable pk after the kth step. Thus, we have

pk = f

(

xk + 1, yk −
1

2

)

= (xk + 1)2
+

(

yk −
1

2

)2

− r2

Note that if pk < 0, the midpoint is inside the circle. Thus, yk is closer to the circle

boundary and we choose the pixel (xk + 1, yk). Otherwise, we choose (xk + 1, yk − 1) as the

midpoint is outside the circle and yk − 1 is closer to the circle boundary.

To come up with an efficient algorithm, we perform some more tricks. First, we consider

the decision variable for the (k + 1)th step pk+1 as,

pk+1 = f

(

xk+1 + 1, yk+1 −
1

2

)

= [(xk + 1) + 1]2
+

(

yk+1 −
1

2

)2

− r2

After expanding the terms and rearranging, we get Eq. 9.2.

pk+1 = pk + 2(xk + 1) + (y2
k+1 − y2

k) − (yk+1 − yk) + 1 (9.2)

In Eq. 9.2, yk+1 is yk if pk < 0. In such a case, we have pk+1 = pk + 2xk + 3. If pk > 0,

we have yk+1 = yk −1 and pk+1 = pk +2(xk −yk)+5. Thus, we can choose pixels based on

an incremental approach (computing the next decision parameter from the current value).

One thing remains, that is the first decision variable p0. This is the decision variable at

(0, r). Using the definition of p0, we can compute it as follows.

p0 = f

(

0 + 1, r −
1

2

)

= 1 +

(

r −
1

2

)2

− r2

=
5

4
− r

The pseudocode of the algorithm is shown in Algorithm 9.3, where RoundOff(a) rounds

off the number a to its nearest integer.

With very simple modifications to Algorithm 9.3, we can determine pixels for circles

about any arbitrary center. The modifications are left as an exercise for the reader.
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Midpoint circle drawing algorithm

1: Input: The radius of the circle r

2: Output: Set of pixels P to render the line segment

3: Compute p =
5
4
− r

4: Set x = 0, y = RoundOff (r)

5: Add the four axis points (0, y), (y, 0), (0,−y) and (−y, 0) to P

6: repeat

7: if p < 0 then

8: Set p = p + 2x + 3

9: Set x = x + 1

10: else

11: Set p = p + 2(x − y) + 5

12: Set x = x + 1, y = y − 1

13: end if

14: Add (x, y) and the seven symmetric points {(y, x), (y,−x), (x,−y), (−x,−y), (−y,−x), (−y, x),

(−x, y)} to P

15: until x ≥ y

Algorithm 9.3

Let us consider a circle with radius r = 2.7. We will execute the steps of Algorithm 9.3 to see how

the pixels are determined.

First, we compute p = −1.05 and set x = 0, y = 3 (lines 3–4). Also, we add the axis pixels

{(0,3), (3,0), (0,−3), (−3,0)} to the output pixel list P (line 5). Then, we enter the loop.

Note that p = −1.45 < 0. Hence, the IF part (lines 7–9) is executed and we get p = 1.55 and

x = 1 (y remains unchanged). So, the pixels added to P are (line 14): {(1,3), (3,1), (3,−1), (1,−3),

(−1,−3), (−3,−1), (−3,1), (−1,3)}. Since x = 1 < y = 3, the loop is executed again.

In the second run of the loop, we have p = 1.55 > 0. Hence, the ELSE part is now executed

(lines 10–12) and we get p = 2.55, x = 2, and y = 2. Therefore, the pixels added to P are {(2,2),

(2,2), (2,−2), (2,−2), (−2,−2), (−2,−2), (−2,2), (−2,2)}. Since now x = 2 = y, the algorithm

terminates.

Thus, at the end, P consists of the 20 pixels {(0,3), (3,0), (0,−3), (−3,0), (1,3), (3,1), (3,−1),

(1,−3), (−1,−3), (−3,−1), (−3,1), (−1,3), (2,2), (2,2), (2,−2), (2,−2), (−2,−2), (−2,−2), (−2,2),

(−2,2)}.

Note that the output set P contains some duplicate entries. Before rendering, we perform further

checks on P to remove such entries.

Example 9.2

9.3 FILL AREA SCAN CONVERSION

What we discussed so far is concerned with the determination of pixels that define a line or

a circle boundary. Sometimes, however, we may know the pixels that are part of a region

and we want to apply a specific color to that region (i.e., color the pixels that are part
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of the region). In other words, we want to fill the region with a specified color. For exam-

ple, consider an interactive painting system. You draw an arbitrary shape and color it (both

boundary and interior). Now, you want to change the color of the shape interactively (e.g.,

select a color from a menu and click in the interior of the shape to indicate that the new

color be applied to the shape). There are many ways to perform such region filling. The

techniques depend on how the regions are defined. There are broadly the following two

types of definitions of a region.

Pixel level definition A region is defined in terms of its boundary pixels (known as

boundary-defined) or the pixels within its boundary (called interior defined). Such defi-

nitions are used for regions having complex boundaries or in interactive painting systems.

Geometric definition A region is defined in terms of geometric primitives such as edges

and vertices. Primarily meant for defining polygonal regions, such definitions are commonly

used in general graphics packages.

In the following section, we shall discuss algorithms used to fill regions defined in either

of the ways.

9.3.1 Seed Fill Algorithm

In the seed fill algorithm, we start with one interior pixel and color the region progres-

sively. The algorithm works based on the boundary definition of a region (i.e., pixel level

definition with the boundary pixels specified). It further assumes that we know atleast one

interior pixel called the seed (which is easy to obtain from the boundary pixels). More-

over, it is assumed that an interior pixel is connected to either four (four-connected) or

eight (eight-connected) of its neighbouring pixels. In the former case, the neighbours are:

top, bottom, left, and right pixels. In the latter case, the neighbours are: top, top left,

top right, left, right, bottom, bottom left, and bottom right pixels. The algorithm works

as follows.

We maintain a stack for the algorithm. The seed is first pushed to the stack. While the

stack is not empty, we pop the stack top pixel and color it. Then, for four-connected con-

vention, we check each of the four connected pixels to the current pixels. If the connected

pixel is a boundary pixel (i.e., having the boundary color) or already has the specified color,

we ignore it. Otherwise, we push it into the stack. A similar step is done for eight-connected

convention also, with the only difference that the eight neighbouring pixels are checked

instead of four. The steps are shown in Algorithm 9.4.

9.3.2 Flood Fill Algorithm

In the flood fill algorithm, we assume an interior definition (i.e., interior pixels of a

region are known). We want to recolor the region with a specified color. The algorithm

is similar to the seed fill algorithm, with the difference that now we take decisions

based on the original interior color of the current pixels instead of the boundary

pixel color. Other things remain the same. The pseudocode of the procedure is shown

in Algorithm 9.5.
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Seed fill algorithm

1: Input: Boundary pixel color, specified color, and the seed (interior pixel) p

2: Output: Interior pixels with specified color

3: Push(p) to Stack

4: repeat

5: Set current pixel = Pop(Stack)

6: Apply specified color to the current pixel

7: for Each of the four connected pixels (four-connected) or eight connected pixels (eight-connected)

of current pixel do

8: if (connected pixel color 6= boundary color) OR (connected pixel color 6= specified color) then

9: Push(connected pixel)

10: end if

11: end for

12: until Stack is empty

Algorithm 9.4

Flood fill algorithm

1: Input: Interior pixel color, specified color, and the seed (interior pixel) p

2: Output: Interior pixels with specified color

3: Push(p) to Stack

4: repeat

5: Set current pixel = Pop(Stack)

6: Apply specified color to the current pixel

7: for Each of the four connected pixels (four-connected) or eight connected pixels (eight-connected)

of current pixel do

8: if (Color(connected pixel) = interior color then

9: Push(connected pixel)

10: end if

11: end for

12: until Stack is empty

Algorithm 9.5

9.3.3 Scan Line Polygon Fill Algorithm

Unlike the seed fill or flood fill algorithms, we assume that a polygonal region is defined

in terms of its vertices and edges (i.e., a geometric definition) in the scan line polygon fill

algorithm. We shall further assume that the vertices are rounded off to the nearest pixels.

The pseudocode is shown in Algorithm 9.6.

Let us illustrate the idea with an example. Consider Fig. 9.5. The polygon is specified

with the four vertices A, B, C, and D (note that we are following an anti-clockwise vertex

naming convention). Therefore, the edges are AB, BC, CD, and DA. Let us execute the steps

of the algorithm.



i

i

“Chapter-9” — 2015/9/15 — 9:44 — page 179 — #13
i

i

i

i

i

i

Rendering 179

Scan line polygon fill algorithm

1: Input: Set of vertices of the polygon

2: Output: Interior pixels with specified color

3: From the vertices, determine the maximum and minimum scan lines (i.e., maximum and minimum y

values) for the polygon.

4: Set scanline = minimum

5: repeat

6: for Each edge (pair of vertices (x1, y1) and (x2, y2)) of the polygon do

7: if (y1 ≤ scanline ≤ y2) OR (y2 ≤ scanline ≤ y1) then

8: Determine edge–scanline intersection point

9: end if.

10: end for

11: Sort the intersection points in increasing order of x coordinate

12: Apply specified color to the pixels that are within the intersection points

13: Set scanline = scanline + 1

14: until scanline = maximum

Algorithm 9.6

Y

X

7

6

(0, 0)
A(5, 1)

D(1, 3)

C(3, 6)

B(6, 4)

Fig. 9.5 Illustrative example of the scan line polygon fill algorithm

First, we determine the maximum and minimum scanlines (line 3) from the coordinate of

the vertices as: maximum = max{1,4,6,3} (i.e., maximum of the vertex y-coordinates) = 6,

minimum = min{1,4,6,3} (i.e., minimum of the vertex y-coordinates) = 1.

In the first iteration of the outer loop, we first determine the intersection points of the scan

line y = 1 with all the four edges in the inner loop (lines 6–10). For the edge AB, the IF

condition is satisfied and we determine the intersection point as the vertex A (lines 7–8). For

BC and CD, the condition is not satisfied. However, for DA, again the condition is satisfied

and we get the vertex A again. Thus, the two intersection points determined by the algorithm

are the same vertex A. Since this is the only pixel between itself, we apply specified color to

it (lines 11–12). Then we set scanline = 2 (line 11). Since 2 6= maximum = 6, we reenter

the outer loop.

In the second iteration of the outer loop, we check for the intersection points between the

edges and the scanline y = 2. For the edge AB, the IF condition is satisfied. So there is an

intersection point, which is (5 1
3
, 2). The edges BC and CD do not satisfy the condition, hence
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there are no edge–scanline intersections. The condition is satisfied by the edge DA and the

intersection point is (3,2). After sorting (line 11), we have the two intersection points (3,2)

and (5 1
3
, 2). The pixels in between them are (3,2), (4,2), and (5,2). We apply the specified

color to these pixels (line 12) and set scanline = 3. Since 3 6= maximum = 6, we reenter the

outer loop.

The algorithm works in a similar way for the the remaining scanlines y = 3, y = 4,

y = 5, and y = 6 (the execution is left as an exercise for the reader). There are two

things in the algorithm that require some elaboration. First, how do we determine the edge–

scanline intersection point? Second, how do we determine pixels within two intersection

points?

We can use a simple method to determine the edge–scanline intersection point. First,

from the vertices, determine the line equation for an edge. For example, for the edge AB in

Fig. 9.5, we compute m =
4−1
6−4

= 3. Thus, the line equation is y = 3x + b. Now, evaluating

the equation at the end point A (i.e., x = 5, y = 1), we get b = 1 − 3.5 = −14. Therefore

the equation for AB is y = 3x − 14. Now, to determine the edge–scanline intersection point,

simply replace the scanline (y) value in the equation and compute the x-coordinate. Thus, to

get the x-coordinate of the intersection point between the scanline y = 2 and AB, we evaluate

2 = 3x − 14 or x = 5 1
3
.

Given two intersection points (x1, y1) and (x2, y2) where x1 < x2, determination of the

pixels between them is easy. Increment x1 by one to get the next pixel and continue till

the current x value is less than x2. If either or both the intersection points are pixels them-

selves, they are also included. As an illustration, consider the two intersection points (3,2)

and (5 1
3
, 2) of the polygon edges (AB and DA, respectively) with the scanline y = 2 in

Fig. 9.5. Here x1 = 3, x2 = 5 1
3
. The first pixel is the intersection point (3,2) itself. The next

pixel is (3 + 1, 2) or (4,2). We continue to get the next pixel as (4 + 1, 2) or (5,2). Since

5 + 1 = 6 > x2 = 5 1
3
, we stop.

An important point to note here is that Algorithm 9.6 works for convex polygons only.

For concave polygons, an additional problem needs to be solved. As we discussed before,

we determine pixels between the pair of edge–scanline intersection points. However, all

these pixels may not be inside the polygon in case of a concave polygon, as illustrated in

Fig. 9.6. Therefore, in addition to determining pixels, we also need to determine which

pixels are inside.

In order to make Algorithm 9.6 work for concave polygons, we have to perform an inside–

outside test for each pixel between a pair of edge–scanline intersection points (an additional

overhead). The following are the steps for a simple inside–outside test for a pixel p.

1. Determine the bounding box (maximum and minimum x and y coordinates) for the

polygon.

2. Choose an arbitrary pixel po outside the bounding box (This is easy. Simply choose a

point whose x and y coordinates are outside the minimum and maximum range of the

polygon coordinates).

3. Create a line by joining p and po (i.e., determine the line equation).

4. If the line intersects the polygon edges an even number of times, p is an outside pixel.

Otherwise, p is inside the polygon.
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(5, 1)

(1, 1)

(6, 4)

(4, 3)(3, 6)Y

X

6

Intersection

point A

Intersection

point B Intersection

point C

Intersection

point D

These pixels

are outside

Fig. 9.6 The problem with concave polygons—two pixels (3,2) and (4,2), which are inside

the pair of intersection points B and C, are not inside the polygon

9.4 CHARACTER RENDERING

An important issue in scan conversion is the way alphanumeric and non-alphanumeric char-

acters are rendered. These are the building blocks of any textual content displayed on the

screen. Efficient rendering of characters is necessary since we often need to display a large

amount of text in a short time span. For example, consider scrolling up/down a text docu-

ment. With each scroll action, a whole new set of characters needs to be displayed on the

screen quickly.

When we deal with characters, the term font or typeface is used to denote the overall

design style of the characters. For example, we have fonts such as Times New Roman,

Courier, Arial, and so on. Each of these fonts can be rendered with varying appearance such

as bold, italic, or both bold and italic. The size of a character on screen is denoted by point

(e.g., 10-point, 12-point), which is a measure of the character height in inches. Although the

term is borrowed from typography (like the other terms), we do not use the original point

measure as used in typography. Instead, we use the definition that ‘a point equals to 1
72

of an

inch or ≈ 0.0139 inch’. This is also known as the DTP (desk top publishing) or postscript

point.

There are broadly two ways to render characters—bitmapped fonts and outlined fonts. In

bitmapped font, a pixel grid definition is maintained for each character. In the grid, those

pixels that are part of the character are marked as on pixels and the others are marked as

off pixels. The idea is illustrated in Fig. 9.7. In contrast, a character is defined in terms of

geometric primitives such as points and lines in the outlined definition of font. Before ren-

dering, the characters are scan converted (i.e., pixels are determined using scan conversion

methods such as those we discussed for points, lines, and circles). The idea is illustrated in

Fig. 9.8.

Clearly, bitmapped fonts are simple to define and fast to render (since we do not need

to compute pixels). However, they require large storage and do not look good after resizing

or reshaping. Also, the size of the bitmapped font depends on screen resolution. For exam-

ple, a 12-pixel high bitmap will produce a 12-point character in a 72 pixels/inch resolution.

However, the same bitmap will produce 9-point character in a 96 pixels/inch resolution.
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Y

X

Off pixel
On pixel

8 × 8 pixel grid

Fig. 9.7 Bitmap font definition for the character B

Y

X

Vertex pixel
Line pixels

Fig. 9.8 The same character B of Fig. 9.7 is defined in terms of vertices and edges, as out-

line definition.The intermediate pixels are computed using scan conversion procedure during

rendering.

Outline fonts, on the other hand, require less storage and we can perform geometric trans-

formations with satisfactory effect to reshape or resize such fonts. Moreover, they are not

resolution-dependent. However, rendering is slow since we have to perform scan conversion

procedures before rendering.

9.5 ANTI-ALIASING

Let us consider Fig. 9.9. This is basically a modified form of Fig. 9.1, where we have

seen the pixels computed to render the line. As shown in Fig. 9.9, the scan converted line

(shown as a continuous line) does not look exactly like the original (shown as a dotted

line). Instead, we see a stair-step like pattern, often called the jaggies. This implies that,

after scan conversion, some distortion may occur in the original shape. Such distortions are

called aliasing (we shall discuss in the next section why it is called so). Some additional

operations are performed to remove such distortions, which are known as anti-aliasing

techniques.



i

i

“Chapter-9” — 2015/9/15 — 9:44 — page 183 — #17
i

i

i

i

i

i

Rendering 183

5

2(0, 0)

Scan converted

line

Actual line

7

Y

X

Fig. 9.9 Problem of aliasing—Note the difference between actual line (dotted) and scan

converted line

9.5.1 Aliasing and Signal Processing

Aliasing is usually explained in terms of concepts borrowed from the field of signal pro-

cessing. We know that in computer graphics, we are concerned about synthesizing images.

Think of it as a problem of rendering a true image (on window in view coordinate system)

to device. The image is defined in terms of intensity values, which can be any real num-

ber. Therefore, the intensity of a true image represents a distribution of continuous values.

In other words, a true image can be viewed as a continuous signal. The rendering process

then can be viewed as a two stage process: sampling of the continuous signal (i.e., comput-

ing pixel intensities) and then reconstructing the original signal as the set of colored pixels

on the display. When we reconstruct an original signal, the reconstructed signal is clearly

a false representation of the original. In English, when a person uses a false name, that is

known as an alias, and so it was adapted in signal analysis to apply to falsely represented

signals. As we have already seen, aliasing usually results in visually distracting artifacts.

Additional efforts go into trying to reduce or eliminate its effect, through techniques that we

call anti-aliasing.

A continuous intensity signal can be viewed as a composition of various frequency

components (i.e., primary signal of varied frequencies). The uniform regions of constant

intensity values correspond to the low frequency components, whereas values that change

abruptly and correspond to sharp edges are at the high end of the frequency spectrum.

Clearly, such abrupt changes in the intensity signal result in aliasing effects, which we need

to smoothen out. In other words, we need to remove (filter) high frequency components from

the (reconstructed) intensity signal. Consequently, we have the following two broad groups

of anti-aliasing techniques.

Pre-filtering It works on the true signal in the continuous space to derive proper val-

ues for individual pixels. In other words, it is filtering before sampling. There are various

pre-filtering techniques, often known as area sampling.

Post-filtering In post-filtering, we try to filter high frequency components of the sig-

nal from the sampled data (i.e., modify computed pixel values). In other words, it
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is filtering after sampling. The post-filtering techniques are often known as super

sampling.

Let us now get some idea about the working of these two types of filtering techniques.

9.5.2 Pre-�ltering or Area Sampling

In pre-filtering techniques, we assume that a pixel has an area (usually square or circular

with unit radius), rather than being a dimensionless point. Lines passing through those pix-

els have some finite width. In other words, each line has some area. In order to compute pixel

intensity, we first determine the percentage p of pixel area occupied by the line. Assume the

original line color (either preset or computed from the stages of the graphics pipeline) is cl

and the background color is cb. Then, we set pixel intensity I = p.cl + (1 − p)cb. The idea

is illustrated in Fig. 9.10.

0

0

1

1

2

2Pixel (0, 1) - area

overlap 50%

Line (with

width)

Y

X

Fig. 9.10 Illustration of area sampling technique. Each square represents a pixel area.

Depending on the area overlap of the line with the pixels, pixel intensities are set.

9.5.3 Gupta–Sproull Algorithm

The Gupta–Sproull algorithm is a pre-filtering technique for anti-aliased line drawing. In

this algorithm, the intensity of a pixel is set based on the distance of a line center from the

pixel center. The algorithm is based on the midpoint line drawing algorithm. Let us first

understand this algorithm.

Consider Fig. 9.11. Let us assume that we have just determined the pixel (xk, yk). There are

two candidates for the next pixel: E(xk +1, yk) and NE (xk +1, yk +1). This is similar to the

Bresenham’s algorithm. However, instead of the decesion parameter based on the distance of

the line from the candidate pixels, here we consider the midpoint M(xk + 1, yk +
1
2
) between

the candidate pixels. We know that a line can be represented as F(x, y) = ax + by + c,

where a, b, and c are integer constants. We can restate the same as F(x, y) = 2(ax + by + c)

without changing the nature of the equation. We require this matematical manipulation to

avoid some floating point operations. We set our decision variable as,

dk = F(M)

= F

(

xk + 1, yk +
1

2

)

= 2(a(xk + 1) + b

(

yk +
1

2

)

+ c)
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Midpoint between

candidate pixels

Upper candidate pixel

NE(xk + 1, yk +  1)

Lower candidate pixel

E(xk +  1, yk)

Y

X(xk, yk)

M(xk +  1, yk +  1/2)

Fig. 9.11 Midpoint line drawing algorithm. The decision variable is based on the midpoint

between the candidate pixels.

If d > 0, the midpoint is below the line. Thus, the pixel NE is closer to the line and we

choose it. In such a case, the next decision variable is,

dk+1 = F

(

(xk + 1) + 1, (yk + 1) +
1

2

)

= 2

(

a((xk + 1) + 1) + b

(

(yk + 1) +
1

2

)

+ c

)

=

[

2(a(xk + 1) + b

(

yk +
1

2

)

+ c

]

+ 2(a + b)

= dk + 2(a + b)

Similarly, if dk ≤ 0, we choose the next pixel as E. In that case, we have

dk+1 = F

(

(xk + 1) + 1,

(

yk +
1

2

))

Expanding and rearranging as before, we get dk+1 = dk + 2a (check for your-

self). The initial decision variable is defined as d0 = F(x0 + 1, y0 +
1
2
). Expanding,

we get

d0 = 2

(

a(x0 + 1) + b

(

y0 +
1

2

)

+ c

)

= 2(ax0 + by0 + c) + 2

(

a +
1

2
b

)

= F(x0, y0) + 2a + b

= 2a + b since F(x0, y0) = 0.

Algorithm 9.7 shows the pseudocode of this algorithm.

In the Gupta–Sproull algorithm, the basic midpoint algorithm is modified a little. Con-

sider Fig. 9.12. Suppose the current pixel is (xk, yk). Based on the midpoint, we have chosen

pixel E in the next step. D is the perpendicular distance of E from the line. Using analytical
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Midpoint line drawing algorithm

1: Input: The two line end points (x1, y1 and x2, y2)

2: Output: Set of pixels P to render the line segment

3: Determine the line constants a, b, and c from the end points

4: Determine the initial decision value d = 2a + b

5: Set x = x1, y = y1

6: Add (x1, y1) to P

7: repeat

8: if d > 0 then

9: Set x = x + 1, y = y + 1

10: Set d = d + 2(a + b)

11: else

12: Set x = x + 1

13: Set d = d + 2a

14: end if

15: Add (x, y) to P

16: until x < x2 − 1

17: Add (x2, y2) to P

Algorithm 9.7

Midpoint

1 − v

v

1 + v

(xk, yk)

NE(xk +  1, yk +  1)

E(xk+1, yk)

Dupper

Dlower

D

Fig. 9.12 Illustration of distance calculation in the Gupta–Sproull algorithm

geometry, we can determine D as (left as an exercise for the reader),

D =
d +△x

2
√

△x2 +△y2
(9.3)

In the expression, d is the midpoint decision variable and △x and △y are the differences

in x and y coordinate values of the line endpoints, respectively. Note that the denominator is

a constant.

The intensity of E will be a fraction of the original line color. The fraction is determined

based on D. This is unlike Algorithm 9.7 where the line color is simply assigned to E. In

order to determine the fraction, a cone filter function is used. In other words, the more the

distance of the line from the chosen pixel center, the lesser will be the intensity. The function
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is implemented in the form of a table. In the table, each entry represents the fraction with

respect to a given D.

In order to increase the line smoothness, the intensity of the two vertical neighbours of E,

namely the points (xk +1, yk +1) and (xk +1, yk −1) are also set in a similar way according

to their distances Dupper and Dlower respectively from the line. We can analytically derive the

two distances as (derivation is left as an exercise),

Dupper = 2
(1 − v)△x

2
√

△x2 +△y2
(9.4a)

Dlower = 2
(1 + v)△x

2
√

△x2 +△y2
(9.4b)

If instead of E, we have chosen the NE pixel, the corresponding expressions would be

(derivation is left as an exercise for the reader),

D =
d −△x

2
√

△x2 +△y2
(9.5a)

Dupper = 2
(1 − v)△x

2
√

△x2 +△y2
(9.5b)

Dlower = 2
(1 + v)△x

2
√

△x2 +△y2
(9.5c)

Note that in Eq. 9.5(b), Dupper is the perpendicular distance of the pixel (xk + 1, yk + 2)

and Dlower denotes the distance of the pixel E (xk + 1, yk) from the line.

Thus in the Gupta–Sproull algorithm (Algorithm 9.8), we perform the following addi-

tional steps in each iteration of the midpoint line drawing algorithm.

Gupta–Sproull algorithm

1: if The lower candidate pixel E is chosen then

2: Compute DE =
d +△x

2
√

△x2 +△y2

3: else

4: Compute DNE =
d −△x

2
√

△x2 +△y2

5: end if

6: Update d as in the regular midpoint algorithm

7: Set intensity of the current pixel (E or NE) according to D, determined from the table (the higher the

value, the lower the intensity)

8: Compute Dupper = 2
(1− v)△x

2
√

△x2 +△y2

9: Compute Dlower = 2
(1+ v)△x

2
√

△x2 +△y2

10: Set the intensity of the two vertical neighbours of the current pixels according to Dupper and Dlower,

determined from the table (the higher the value, the lower the intensity)

Algorithm 9.8
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Let us understand the working of the Gupta–Sproull algorithm in terms of an example. Consider

the line segment shown in Fig. 9.13 between the two end points A(1,1) and B(4,3). Our objective

is to determine the following two things.

1. The pixels that should be colored to render the line.

2. The intensity values to be applied to the chosen pixels (and its vertical neighbours) to reduce

aliasing effect.

4

3

Actual line

E′(3, 2)NE(2, 2)

(0, 0)
X

Y

Fig. 9.13 Gupta–Sproull algorithm example

Let us first determine the pixels to be choosen to render the line following the midpoint

algorithm (Algorithm 9.7). From the line end points, we can derive the line equation as 2x −

3y + 1 = 0 (see Appendix A for derivation of line equation from two end points). Thus, we have

a = 2, b = −3, and c = 1. Hence the initial decision value is: d = 1 (lines 3–4, Algorithm 9.7).

In the first iteration of the algorithm, we need to choose between the two pixels: the upper

candidate pixel NE (2,2) and the lower candidate pixel E (2,1) (see Fig. 9.11). Since d > 0, we

choose the NE pixel (2,2) and reset d = −1 (lines 8–10, Algorithm 9.7). In the next iteration,

the two possibilities are: the upper candidate pixel NE′ (3,3) and the lower candidate pixel E′

(3,2). Since now d < 0, we choose E′ (3,2) as the next pixel to render and reset d = 3 (lines

11–13, Algorithm 9.7). However, since now x = 3, the looping condition check fails (line 16,

Algorithm 9.7). The algorithm stops and returns the set of pixels {(1,1), (2,2), (3,2), (4,3)}. These

are the pixels to be rendered.

Next, we determine the intensity values for the choosen pixels and its two vertical neighbours

according to the Gupta–Sproull algorithm (Algorithm 9.8). We know that △x = 4 − 1 = 3 and

△y = 3− 1 = 2. Let us start with the first intermediate pixel. Note that the first intermediate pixel

chosen is the upper candidate pixel NE (2,2). For this pixel, we have d = 1. Therefore, we compute

the perpendicular distance D from the line as,

DNE =
−1
√

13
(line 4, Algorithm 9.8)

Next, we have to compute the distances of the vertical neighbours of the choosen pixels Dupper

and Dlower. The line equation is 2x − 3y + 1 = 0. At the chosen pixel position, x = 2. Putting this

value in the line equation, we get y =
5
3
. Therefore, v =

5
3
− 1 =

2
3

(see Fig. 9.12). Hence,

Example 9.3
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Dupper =
1

√

13
(line 8, Algorithm 9.8)

Dlower =
1

√

13
(line 9, Algorithm 9.8)

We perform a table lookup to determine the fraction of the original line color to be applied to

the three pixels based on the three computed distances.

The next chosen point is the lower candidate pixel E′ (3,2). For this pixel, we have d = −1.

Hence, the perpendicular distance of the pixel from the line is computed as,

DE =
1

√

13

As in the previous case, we compute Dupper and Dlower for the two vertical neighbours of E′.

For E′, x = 3. We put this value in the line equation 2x − 3y + 1 = 0 to obtain y =
7
3
. Therefore,

v =
7
3
− 2 =

1
3

(see Fig. 9.12). Hence,

Dupper =
2

√

13

Dlower =
4

√

13
As before, we perform the table lookup to determine the fraction of the line color to be assigned

to these three pixels based on the three distances.

9.5.4 Super Sampling

In super sampling, each pixel is assumed to consist of a grid of sub-pixels (i.e., we effec-

tively increase the display resolution). In order to draw an anti-aliased line, we count the

number of sub-pixels through which the line passes in each pixel. This number is then used

to determine pixel intensity. The idea is illustrated in Fig. 9.14.

Another approach is to use a finite line width. In that case, we determine which sub-pixels

are inside the line (a simple check for this is to consider sub-pixels, whose lower left corners

are inside the line, to be inside). Then, pixel intensity is determined as the weighted average

of the sub-pixel intensities, where the weights are the fraction of sub-pixels that are inside or

A pixel with 2 × 2

sub-pixel grid

2

1

0

0 1 2

X

Y

Fig. 9.14 The idea of super sampling with a 2 × 2 sub-pixel grid for each pixel. The pixel

intensity is determined based on the number of sub-pixels through which the line passes.For

example, in the pixel (0,0), the line passes through 3 sub-pixels. However, in (1,0), only one

sub-pixel is part of the line. Thus, intensity of (0,0) will be more than (1,0)
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Pixel (1, 1). Three of the four

sub-pixels are inside the line

Line with

width

2

1

0

0 1 2

X

Y

Fig. 9.15 The idea of super sampling for lines with finite width

outside of the line. For example, consider Fig. 9.15 where each pixel is divided into a 2 × 2

sub-pixel grid.

Assume that the original line color is red (R = 1, G = 0, B = 0) and background is

light yellow (R = 0.5, G = 0.5, B = 0). Note that three sub-pixels (top right, bottom left,

and bottom right) are inside the line in pixel (1,1). Therefore, the fraction of sub-pixels that

are inside is 3
4

and the outside sub-pixel fraction is 1
4
. The weighted average for individual

intensity components (i.e., R, G, and B) for the pixel (1,1) therefore are,

AverageR = 1 ×
3

4
+ 0.5 ×

1

4
=

7

8

AverageG = 0 ×
3

4
+ 0.5 ×

1

4
=

1

8

AverageB = 0 ×
3

4
+ 0 ×

1

4
= 0

Thus, the intensity of (1,1) will be set as (R =
7
8
, G =

1
8
, B = 0).

Sometimes, we use weighting masks to control the amount of contribution of var-

ious sub-pixels to the overall intensity of the pixel. The size of the mask depends

on the sub-pixel grid size. For example, for a 3 × 3 sub-pixel grid, we shall have a

3 × 3 mask. How do we determine pixel intensity from a given mask? Let us consider

an example.

Assume we have the following 3 × 3 mask.





1 2 1

2 4 2

1 2 1





Note that the intensity contribution of a sub-pixel is its corresponding mask value divided

by 16 (sum of all the values). For example, the contribution of the center sub-pixel is 4
16

.

Now suppose a line passes through (or encloses) the sub-pixels top, center, bottom left, and

bottom of a pixel (x, y). Thus, if the line intensity is cl(rl, gl, bl) and the background color
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is cb(rb, gb, bb), then the pixel intensity can be computed as: Intensity = (total contribution

of sub-pixels) × line color + (1 − total contribution of sub-pixels) × background color for

each of the R, G, and B color components as we have done before.

SUMMARY

In this chapter, we learnt about the last stage of the 3D graphics pipeline, namely the rendering

of objects on the screen (also known as scan conversion or rasterization). We discussed ren-

dering for geometric primitives such as lines and circles. In line rendering, we started with the

simple and intuitive algorithm and saw its inefficiency in terms of the floating point operations

it requires. Only some and not all these operations can be eliminated in the DDA algorithm,

which thus offer little improvement. Bresenham’s algorithm is the most efficient as it renders a

line using integer operations only.The midpoint circle rendering algorithm similarly increases the

efficieny by performing mostly integer operations.However,unlike the Bresenham’s line drawing,

some floating point operations are still required in midpoint circle drawing.

An issue in interactive graphics is to render a fill area (i.e. an enclosed region).We discussed

the two ways to define a fill area, namely the pixel-level definition and geometric definition.

Depending on the definition, we discussed various fill area rendering algorithms such as seed

fill, flood fill, and scanline polygon fill. The first two rely on pixel-level definitions while the third

algorithm assumes a geometric definition of fill area.

A frequent activity in computer graphics is to display characters. We discussed both the

bitmap and outlined character rendering techniques along with their pros and cons.

Finally, the problem of distortion in original shapes (known as aliasing) that arises during

the rendering process is discussed, along with the various techniques (called anti-aliasing) to

overcome it. Following an explanation of the origin of the term aliasing with the signal pro-

cessing concepts, we mentioned and briefly discussed the two broad groups of anti-aliasing

techniques:pre-filtering and post-filtering.The pre-filtering or area sampling is discussed includ-

ing the Gupta–Sproull algorithm. We also learnt about the idea of various post-filtering or super

sampling techniques with illustrative examples.

Bresenham [1965] and Bresenham [1977] contain the original idea on the Bresenham’s

algorithm. More on the midpoint methods can be found in Kappel [1985]. Fill area scan con-

version techniques are discussed in Fishkin and Barsky [1984]. Crow [1981], Turkowski [1982],

Fujimoto and Iwata [1983], Korien and Badler [1983], Kirk and Arvo [1991], and Wu [1991]

can be referenced for further study on anti-aliasing techniques. The Computer Gems book

series ((Glassner [1990], Arvo [1991], Kirk [1992], Heckbert [1994] and Paeth [1995]) contain

additional discussion on all these topics.

BIBLIOGRAPHIC NOTE

KEY TERMS

Aliasing – the distortions that may occur to an object due to scan conversion

Anti-aliasing – techniques to eliminate/reduce the aliasing effects

Bitmapped fonts – a character representation scheme in which each character is represented in

terms of on and off pixels in a pixel grid

Boundary defined – defining a fill area in terms of its boundary pixels
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Bresenham’s algorithm – a more efficient line scan conversion algorithm that works based on

integer operations only

DDA algorithm – a line scan conversion algorithm

Decision parameter – a parameter used in the Bresenham’s algorithm

Eight-connected – an interior pixel is connected to eight of its neighbours

Flood fill algorithm – a fill area scan conversion algorithm that works with the interior defined

regions

Font/Typeface – overall design style of a character

Four-connected – an interior pixel is connected to four of its neighbours

Geometric definition – defining a fill area in terms of geometric primitives such as edges and

vertices

Gupta-Sproull algorithm – a pre-filtering anti-aliasing technique for lines

Interior defined – defining a fill area in terms of its interior pixels

Midpoint algorithm – an algorithm for circle scan conversion

Outlined font – a character representation scheme in which each character is represented in

terms of some geometric primitives such as points and lines

Pixel level definition – defining a fill area in terms of constituent pixels

Point (of font) – size of a character

Post-filtering/Super sampling – anti-aliasing techniques that work on the pixels to modify their

intensities

Pre-filtering/Area sampling – anti-aliasing techniques that work on the actual signal and derive

appropriate pixel intensities

Scan conversion/Rasterization/Rendering – the process of mapping points from continuous

device space to discrete pixel grid

Scan line polygon fill algorithm – a fill area scan conversion algorithm that works with geometric

definition of fill regions

Seed – an interior pixel inside a fill area

Seed fill algorithm – a fill area scan conversion algorithm that works with the boundary defined

regions

Sub pixel – a unit of (conceptual) division of a pixel for super sampling techniques

EXERCISES

9.1 Discuss the role played by the rendering techniques in the context of the 3D graphics

pipeline.

9.2 Derive the incremental approach of the Bresenham’s line drawing algorithm. Algorithm 9.2

works for lines with slope 0 ≤ m ≤ 1 or −1 ≤ m ≤ 0. Modify the algorithm for slopes that

are outside this range.

9.3 The midpoint line drawing algorithm is shown in Algorithm 9.7. Is there any difference

between Algorithms 9.2 and 9.7? Discuss with respect to a suitable example.

9.4 Derive the incremental computation on which the midpoint circle algorithm is based.Explain

the importance of the eight-way symmetry in circle drawing algorithms.

9.5 Algorithm 9.3 works for circles having the origin as center. Modify the algorithm so as to

make it work for circles with any arbitrary center.

9.6 Explain the different definitions of an enclosed region with illustrative examples. Calculate

the pixels for the scanlines y = 3, y = 4, y = 5, and y = 6 in the example mentioned in

Section 9.3.3.

9.7 Algorithm 9.6 works for convex polygons only. Modify the algorithm, by incorporating the

steps for the simple inside-outside test, so that the algorithm works for concave polygons

also.
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9.8 Discuss the advantanges and disadvantages of the bitmapped and the outlined font ren-

dering methods. Suppose we have a 20
′′
× 10

′′
display with resolution 720 × 360. What

would be the bitmap size (in pixels) to produce a 12-point font on this display?

9.9 Explain the term aliasing. Why it is called so? How is the concept of filtering related to

anti-aliasing?

9.10 Discuss the basic idea of area sampling with an illustrative example.

9.11 Derive the expressions of Eqs. 9.3, 9.4, and 9.5 using analytical geometry. Modify

Algorithm 9.7 to include the Gupta–Sproull anti-aliasing algorithm.

9.12 Explain the basic idea of super sampling. Discuss, with illustrative examples other than the

ones mentioned in the text, the three super sampling techniques we learnt,namely (a) super

sampling for lines without width, (b) super sampling for lines with finite width, and (c) super

sampling with weighting masks. Do you think the use of masks offers any advantage over

the non-mask-based methods? Discuss.
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CHAPTER

10 Graphics

Hardware and

Software

Learning Objectives

After going through this chapter, the students will be able to

• Review the generic architecture of a graphics system

• Get an overview of the input and output devices of a graphics system

• Understand the basics of the flat panel displays including the plasma panels, thin-

film electroluminescent displays, light-emitting diode (LED) displays, and liquid crystal

displays (LCDs)

• Get an overview of the common hardcopy output devices-printers and plotters

• Know about the widely used input devices including keyboards, mouse, trackballs,

spaceballs, joysticks, data gloves, and touch screen device.

• Learn the fundamentals of the graphics processing unit (GPU)

• Get an overview of shaders and shader programming

• Know about graphics software and software standards

• Learn the basics of OpenGL, a widely used open source graphics library

INTRODUCTION

We are now in a position to understand the fundamental process involved in depicting an

image on a computer screen. In very simple terms, the process is as follows: we start with

the abstract representation of the objects in the image, using points (vertices), lines (edges),

and other such geometric primitives in the 3D world coordinate; the pipeline stages are

then applied to convert the abstract representation to a sequence of bits (i.e., a sequence of

0’s and 1’s); the sequence is stored in the frame buffer and used by the video controller to

activate appropriate pixels on the screen, so that we perceive the image. So far, we have

discussed only the theoretical aspects of this process; how it works conceptually without

elaborating on the implemetation issues. Although we touched upon the topic of displaying

images on a CRT screen Chapter 1, it was very brief. In this chapter, we shall learn in more

detail the implementation aspect of the fundamental process. More specifically, we shall

learn about the overall architecture of a graphics system, the technology of few important

display devices, introductory concepts on the graphics processing unit (GPU), and how the

rendering process (the 3D pipeline) is actually implemented on the hardware. The chapter
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will also introduce the basics of OpenGL, an open source graphics library widely used to

write computer graphics programs.

10.1 GENERIC ARCHITECTURE

Let us begin by reviewing the generic architecture of a graphics system we learnt in Chap-

ter 1 (Refer to Fig. 1.7). Recall that there are five major hardware components apart from the

computer (which basically represents the system memory, CPU, and the system bus together),

which are specific to any graphics system: the display controller, the video controller, the

frame buffer (part of the video memory), the input devices, and the display screen.

Earlier, we understood the working of the system in terms of broad concepts. However,

after learning the pipeline stages, let us now try to understand the relationship between these

hardware components and the pipeline stages. Assume that we have written a program to

display two objects (a ball and a cube) on the screen. Once the CPU detects that the pro-

cess involves graphics operations, it transfers control to the display controller (thus, freeing

itself up for other activities). The controller contains its own processing unit (GPU). The

pipeline stages (geometric transformations, illumination, projection, clipping, hidden sur-

face removal, and scan conversion operations) are then performed on the object definitions

CPU

I/O devices
Display

(a)

System

memory

System bus

Display

controller

Video

controller

CPU

(b)

Display

System

memory

I/O devices

System bus

Display

controller

Display

memory

Frame

buffer

Video

controller

Fig. 10.1 Different ways to integrate memory in the generic graphics system (a) No sepa-

rate graphics memory is present and the system memory is used in shared mode by both

the CPU and the graphics controller (b) Controller has its own dedicated memory
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(as specialized instructions executed in the GPUs) to convert them to the sequence of bits.

The bit sequence gets stored in the frame buffer. In the case of interactive systems, the frame

buffer content may be changed depending on the input coming from the input devices such

as a mouse.

The video controller acts based on the frame buffer content (the bit sequence). The job of

the video controller is to map the value represented by the bit(s) in each frame buffer location

to the activation of the corresponding pixel on the display screen. For example, in the case

of CRT devices, such activation refers to the excitation (by an appropriate amount) of the

corresponding phosphor dots on the screen. Note that the amount of excitation is determined

by the intensity of the electron beam, which in turn is determined by the voltage applied on

the electron gun, which in turn is determined by the frame buffer value.

The frame buffer is only a part of the video memory required to perform graphics oper-

ations. Along with the frame buffer, we also require memory to store object definitions and

instructions for graphics operations (i.e., to store code and data as in any other program).

The memory can be integrated in the generic architecture either as shared system mem-

ory (shared by CPU and GPU) or dedicated graphics memory (part of graphics controller

organization). The two possibilities are illustrated in Fig. 10.1. Note that when the memory

is shared, the execution will be slower since the data transmission takes place through the

common system bus.

10.2 INPUT AND OUTPUT OF GRAPHICS SYSTEM

Whenever we talk of a graphics system, the primary output device that comes to our mind

is a video monitor. Sometimes, instead of monitors, outputs are projected using projectors.

As we know, both can be present together in a graphics system. In addition, the system may

have a third mode of output: hardcopy output through printers or plotters. Head-mounted

displays are also another way of displaying output to a viewer.

10.2.1 Video Monitors

Till very recently, the ubiquitous video monitor was the cathode ray tube or CRT monitor.

We have already seen in Chapter 1 the basic idea behind the working of a CRT. Of late, the

flat panels have started replacing the CRTs. Such screens are much thinner and lighter than

CRTs. As a result, they are useful for both non-portable and portable systems. Consequently,

we can see them almost everywhere around us, in desktops, laptops, palmtops, calculators,

advertising boards, pocket video-game console, wrist-watch, and so on.

Flat Panel Displays

Let us have a look-at the technology behind flat panel displays. The very first thing we

should remember is that flat panel is a generic term indicating a display monitor having a

(much) reduced volume, weight, and power consumption compared to a CRT. Technology-

wise, they are of two types—emissive displays and non-emissive displays. Emissive displays

(or emitters) are those that convert electrical energy into light on the screen. Prominent

examples of such devices are the plasma panels, thin-film electroluminescent displays, and

light-emitting diodes (LEDs). In the case of non-emissive displays (or non-emitters), no
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Inside region (with

gaseous mixture)

Vertical conductor

(inside of the plate)

Glass plates

Horizontal conductor

(inside of the plate)

Pixel (intersection region between

the opposite conducting pairs)

Fig. 10.2 Schematic illustration of the basic plasma panel design

electrical-to-optical energy conversion takes place. Instead, such devices convert light (either

natural light or light from some other sources) to a graphics pattern on the screen through

some optical effects. A widely used non-emissive display is the liquid crystal display (LCD).

Plasma Panels

The schematic of a plasma panel is shown in Fig. 10.2. As the figure illustrates, there are two

glass plates placed parallelly. The region between the plates is filled with a mixture of gases

(xeon, neon, and helium). The inner walls of each glass plate contains a set of parallel con-

ductors (very thin and shaped like ribbons). One plate has a set of vertical conductors while

the other contains a set of horizontal conductors. The region between each corresponding

pair of conductors on the two plates (e.g., two consecutive horizontal and opposite vertical

conductors) form a pixel. The screen side wall of the pixel is coated with phosphors like

in CRT (three phosphors corresponding to RGB for color displays). With the application

of appropriate firing voltage, the gas in the pixel cell breaks down into electrons and ions.

The ions rush towards the electrodes and collide with the phosphor coating emitting lights.

Separation between pixels is achieved by the electric fields of the conductors.

LEDDisplays

Thin-film electroluminescent displays are similar in construction to plasma panels; they also

have mutually perpendicular sets of conducting ribbons on the inside walls of two parallel

glass plates. However, instead of gases, the region between the glass plates is filled with a

phosphor, such as zinc sulphide doped with manganese. The phosphor becomes a conductor

at the point of intersection when a sufficiently high voltage is applied to a pair of cross-

ing electrotodes. The manganese atom absorbes the electrical energy and releases photons,

generating the perception of a glowing spot or pixel on the screen. Such displays, however,

require more power than plasma panels. Also, good color displays with this technology is

difficult to achieve.

Light emitting diode or LED displays are another type of emissive devices, which are

becoming popular nowadays. In such devices, each pixel position is represented by an LED.

Thus, the whole display is a grid of LEDs corresponding to the pixel grid. Based on the frame

buffer information, suitable voltage is applied to each diode to make it emit appropriate

amount of light.
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Liquid Crystal Displays

The most well-known non-emissive display is the liquid crystal display or LCD. In an LCD,

there are two parallel glass plates as before. Each contains a light polarizer that is aligned in

a perpendicular way to the other (i.e., one plate contains the vertical polarizer while the other

contains the horizontal polarizer). Rows of horizontal, transparent conductors are placed on

the (inside) surface of one plate (having the vertical polarizer) while columns of vertical,

transparent conductors are placed on the other. A liquid crystal material is put in between

the plates. The term liquid crystal refers to materials having crystalline molecular arrange-

ment, though they flow like liquids. The material used in flat-panel LCDs typically contain

nematic or thread-like crytalline molecules. The rod-shaped molecules tend to align along

Vertical conductor

Liquid crystal with

rod-shaped cells

Vertical polarizerHorizontal conductor

Horizontal polarizer

Light

(a)

Vertical conductor

Liquid crystal with

rod-shaped cells

Vertical polarizerHorizontal conductor

Horizontal polarizer

Light

(b)

Fig. 10.3 The working of a transmissive LCD. A light source at the back sends light through

the polarizer. The polarized light gets twisted and passes through the opposite polarizer to

the viewer in the active pixel state, shown in (a). (b) shows the molecular arrangement of

the liquid crystal at a pixel position, after voltage is applied to the perpendicular pair of con-

ductors on the opposite glass plates. The arrangement prevents light from passing between

polarizers, indicating deactivation of the pixel.
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their long axes. The intersection points of each pair of mutually perpendicular conductors

define pixel positions. When a pixel position is active, the molecules are aligned as shown

in Fig. 10.3(a). In a reflective display, external light enters through one polarizer and gets

polarized. The molecular arrangement of the liquid crystal ensures that the polarized light

gets twisted so that it can pass through the opposite polarizer. Behind the polarizer, a reflec-

tive surface is present and the light is reflected back to the viewer. In a transmissive display,

a light source is present on the back side of the screen. Light from the source gets polar-

ized after passing through the back side polarizer, twisted by the liquid crystal molecules

and passes through the screen-side polarizer to the viewer. In order to de-activate the pixel,

a voltage is applied to the intersecting pair of conductors. This leads to the molecules in

the pixel region (between the conductors) getting arranged as shown in Fig. 10.3(b). This

new arrangement prevents the polarized light to get twisted and pass through the oppo-

site polarizer. The technology, both reflective and trasmissive, described here is known as

passive-matrix LCD. Another method for constructing LCDs is to place thin-film transistors

at each pixel location to have more control on the voltage at those locations. The transistors

also help prevent charges to be leaking out gradually to the liquid crystal cells. Such types

of LCDs are called active matrix LCDs.

10.2.2 Printers and Plotters

The primary means of hardcopy output, that is the printers, can be of two types—impact and

non-impact printers. In impact printers, pre-formed character faces are present. These are

pressed against an inked ribbon on the paper. An example of impact printers is a line printer,

in which the typefaces are mounted on bands, chains, drums, or wheels. In line printers, the

whole line gets printed at a time. Character printers, on the other hand, print one character

at a time. One widely used character print device, till very recent times, was the dot-matrix

printer. As the name suggests, the print head contained a rectangular array (i.e., matrix) of

portruding wire pins (the dots). The number of pins in the matrix determines the print qual-

ity: higher the number, better the quality. Each of these pins can be retracted inwards. During

printing of a character or graphics pattern, some pins are retracted. The remaining pins then

press against the ribbon on the paper, printing the character or pattern.

Non-impact printers and plotters use laser techniques, ink-jet sprays, electrostatic, and

electrothermal methods to get images onto paper. In a laser device, a laser beam is applied

on a rotating drum. The drum is coated with photo-electric material such as selenium. Con-

sequently, a charge distribution is created on the drum. The toner is then applied to the drum,

which gets transferred to the paper. In ink-jet printers, an electrically charged ink stream is

sprayed in horizontal rows across a paper wrapped around a drum. Using electrical fields that

deflect the charged ink stream, dot-matrix patterns of ink are created on the paper. An elec-

trostatic device places a negative charge on the paper (at selected dot positions determined

by the frame buffer values), one row at a time. The paper is then exposed to a positively

charged toner, which gets attracted to the negatively charged areas, producing the desired

output. Another printing technique is the electrothermal method. In it, heat is applied to a

dot-matrix print head (on selected pins). The print head is then used to put patterns on a

heat-sensitive paper.
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Moving pen

carriage

Pen

Moving arm

Spare pen in

different colours

Fig. 10.4 Flatbed pen plotter device

In order to get colored printouts, impact printers use different-colored ribbons. However,

the range of color produced and the quality are usually limted. Non-impact printers, on

the other hand, are good at producing color images. In such devices, color is produced by

combining the three color pigments (cyan, magenta, and yellow) (see the discussion on

the CMY model in Chapter 5). Laser and electrostatic devices deposit the three pigments

on separate passes; the three colors are shot together on a single pass along each line in

ink-jet printers.

Plotters are another class of hardcopy graphics output devices, which are typically used to

generate drafting layouts and other drawings. In a pen plotter (see Fig. 10.4), one/more pens

are mounted on a carriage, or crossbar, that spans a sheet of paper. The paper can lie flat or

rolled onto a drum or belt and held in place with clamps, a vaccum or an electrostatic charge.

In order to generate different shading and line styles, pens with varying colors and widths

are used. Pen-holding crossbars can either move or remain stationary. In the latter case, the

pens themselves move back and forth along the bar. Instead of pen, ink-jet technology is also

used to design plotters.

10.2.3 Input Devices

Graphics systems usually provide data input facilities for the user, through which users can

manipulate the screen image. The ubiquitous keyboards and mouse, found with any com-

puter, are two examples of such graphics input devices. There are a variety of other devices

also, some of which are designed specifically for interactive computer graphics systems.

Most popular of these devices are discussed in this section.

Keyboards We are all familiar with the alphanumeric keyboards (physical or virtual) that

comes with most graphics systems. The alphanumeric keys in a keyboard are used for text

and command inputs. In addition, keyboards typically contain some function and cursor-

control keys also. With the function keys, frequently performed operations can be selected

with a single key. Cursor-control keys allow the user to set the screen cursor position or

select menu items.
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Mouse A mouse is primarily used to position the cursor on the screen, select on-screen

items, and perform a host of menu operations. Wheels or rollers at the bottom of the mouse

record the amount and direction of mouse movement which is converted to screen-cursor

movement. Sometimes, instead of a roller, optical sensing techniques are used to deter-

mine the amount and direction of mouse movement. There are between one to three buttons

present on a mouse, although the two-button mouse is more common. Along with the but-

tons, it may be equipped with a wheel to perform positioning operations more conveniently.

A mouse may be attached to the main computer with wires or it may be a wireless mouse.

Trackballs and spaceballs Similar to a mouse, trackball devices (Fig. 10.5) are used to

position screen-cursors. A trackball device contains a ball. When the ball is rotated by a fin-

ger/palm/hand, a screen-cursor movement takes place. A potentiometer is connected to the

ball and measures the amount and direction of the ball rotation, which is then mapped to the

screen-cursor movement. While the term trackball typically denotes devices used to con-

trol cursor in a 2D-space (screen), cursor-control in 3D-space is done through spaceballs. A

spaceball provides six degrees of freedom. However, in a spaceball, there are no actual ball

movements. Instead, the ball is pushed and pulled in various directions, which is mapped to

cursor positioning in 3D space.

Joysticks Another positioning device is the joystick (Fig. 10.6). It contains a small, ver-

tical lever (called stick) attached to a base. The stick can be moved in various directions to

move the screen-cursor. The amount and direction of cursor movement is determined by the

Fig. 10.5 Trackball device

Fig. 10.6 Illustrative example of a joystick device
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amount and direction of stick movement from its center position (measured with a poten-

tiometer mounted at the base). In isometric joysticks, however, no movable sticks are present.

Instead, the sticks are pushed or pulled to move on-screen cursor.

Data gloves Commonly used in virtual reality systems, data gloves are devices that allow

a user to position and manipulate virtual objects in a more natural way—through hand or

finger gestures. It is a glove-like device, containing sensors. These sensors can detect the

finger and hand movements of the glove-wearer and map the movement to actions such as

grasping a virtual object, moving a virtual object, rotating a virtual object, and so on. The

position and orientation information of the finger or hand are obtained from electromagnetic

coupling of transmitter and receiver antennas. Each of the transmitting and receiving anten-

nas are constructed as a set of mutually perpendicular coils, thereby creating a 3D cartesian

reference frame.

Touch screens Touch input systems are the preferred mode of input in most consumer-

grade graphics systems nowadays. As the name suggests, on-screen elements are selected

and manipulated through the touch of fingers or stylus (a special pen-like device) in touch

screen systems. Touch input can be recorded using electrical, optical, or accoustic methods.

In optical touch screens, an array of infrared LEDs are placed along one vertical and one hor-

izontal edge. Light detectors are placed along the opposite horizontal and vertical edges. If

a position on the screen is touched, lights coming from the vertical and horizontal LEDs get

interrupted and recorded by the detectors, giving the touch location. In an electrical touch

screen, there are two transparent plates separated by a small distance. One plate is coated

with conducting material while the other is coated with resistive material. When the outer

plate is touched, it comes into contact with the inner plate. This creates a voltage drop across

the resistive plate, which is converted to the coordinate value. Less common are the acoustic

touch screens devices, in which high-frequency sound waves are generated in horizontal and

vertical directions across a glass plate. Touching the screen results in reflecting part of the

waves (from vertical and horizontal directions) back to the emitters. The touch position is

computed from the time interval between transmission of each wave and its reflection back

to the emitter.

Apart from these, many more techniques are used to input data to a graphics system.

These include image scanners (to store drawings or photographs in a computer), digitiz-

ers (used primarily for drawing, painting, or selecting positions), light pens (pencil shaped

device used primarily for selecting screen positions), and voice-based input system (using

speech-recognition technology).

10.3 GPU AND SHADER PROGRAMMING

A characteristic of graphics operations is that they are highly parallel in nature. For exam-

ple, consider the modeling transformation stage of the pipeline. In this stage, we need to

apply transformations (e.g., rotation) to the vertices. A transformation, as we have seen, is

nothing but the multiplication of the transformation matrix with the vertex vector. The same

vector-matrix multiplication is required to be performed for all the vertices which are part

of the scene that we want to transform. Instead of going in for serial multipliclication of one
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matrix-vector pair at a time, if we can apply the operation on all vectors at the same time,

there will be significant gain in performance. The gain becomes critical in real-time render-

ing, where millions of vertices need to be processed per second. CPUs, owing to their design,

cannot take advantage of this inherent parallelism in graphics operations. As a result, almost

all graphics systems nowadays come with a separate graphics card containing its own pro-

cessing unit and memory elements. The processing unit is known as the graphics processing

unit or GPU.

10.3.1 Graphics Processing Unit

A GPU is a multicore system: it contains a large number of cores or unit processing elements.

Each of these cores is a stream processor—it works on data streams. The cores are capable

of performing simple integer and floating point arithmetic operations only. Multiple cores

are grouped together to form streaming multiprocessors (SM). To understand the working

of SMs, let us revisit our previous example of geometric transformation of vertices. Note

that the instruction (multiplication) is same; the data (vertex vectors) varies. Consequently,

what we have is known as single instruction multiple data (SIMD). The idea is illustrated

in Fig. 10.7. Each SM is designed to perform SIMD operations. Organization of GPU cores

and their interconnection to various storage elements (local and global) are schematically

depicted in Fig. 10.8.

Let us try to understand how the 3D graphics pipeline is implemented with the GPU.

Most real-time graphics systems assume that everything in a scene is made of triangles.

Instruction

Core Core

Data

Scalar operation SIMD operation

A0 B0 C0

A1 B1 C1
A1 B1 C1

A0 B0 C0

Core Core

+ =

+ =

+ =

(a)

(b) (c)

Fig. 10.7 Single instruction multiple data (SIMD) (a) The idea (b) Serial additions performed

on inputs (c) Same output obtained with a single addition applied on data streams
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Host

Input assembler

Thread execution manager

Global memory

Load/storeLoad/store ..........

..........

Streaming

multiprocessor

Parallel data

cache

Textute storage

Streaming

multiprocessor

Parallel data

cache

Textute storage A streaming

multiprocessor containing

several streaming

processor(cores)

Core Core

Core Core

Core Core

Core Core

Fig. 10.8 An illustrative GPU organization. Each core is a very simple processing unit

capable of performing simple floating point and integer arithmetic operations only.

Surfaces that are not expressed in terms of triangles, such as quadrilaterals or curved surface

patches (see Chapter 2), are converted to triangular meshes. Through the APIs supported in

a computer graphics library, such as OpenGL or Direct3D, the triangles are sent to the GPU

one vertex at a time. The GPU assembles vertices into triangles as needed.

The vertices are expressed with homogeneous coordinates (see Chapter 3). The objects

they define are represented in local or modeling coordinate system. After the vertices have

been sent to the GPU, it performs modeling transformations on these vertices. The transfor-

mation (single or composite), as you may recall, is acheived with a single matrix-vector

multiplication: the matrix represents the transformation while the vector represents the

vertex. The multicore GPU architecture can be used to perform multiple such operations

simultaneously. In other words, multiple vertices can be simultaneously transformed. The

output of this stage is a stream of triangles, all represented in a common (world) coordinate

system in which the viewer is located at the origin and the direction of view is aligned with

the z-axis.

In the third stage, the GPU computes the color of each vertex based on the light defined

for the scene. Recall the structure of the simple lighting equation we discussed in Chapter 4.

The color of any vertex can be computed by evaluating vector dot products and a series of
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add and multiply operations. In a GPU, we can perform these operations simultaneously for

multiple vertices.

In the next stage, each colored 3D vertex is projected onto the view plane. Similar to the

modeling transformations, the GPU does this using matrix-vector multiplication (see Chap-

ter 6 for the maths involved), again leveraging efficient vector operations in hardware. The

output after this stage is a stream of triangles in screen or device coordinates, ready to be

converted to pixels.

Each device space triangle, obtained in the previous stage, overlaps some pixels on the

screen. In the rasterization stage, these pixels are determined. GPU designers over the years

have incorporated many rasterization algorithms, such as those we discussed in Chapter 9.

All these algorithms exploit one crucial observation: each pixel can be treated indepen-

dently from all other pixels. This leads to the possibility of handling all pixels in parallel.

Thus, given the device space triangles, we can determine the color of the pixels for all pixels

simultaneously.

During the pixel processing stage, two more activities take place—surface texturing and

hidden surface removal. In the simplest surface texturing method, texture images are draped

over the geometry to give the illusion of detail (see Chapter 5). In other words, the pixel color

is replaced or modified by the texture color. GPUs store the textures in high-speed memory,

which each pixel calculation must access. Since this access is very regular in nature (nearby

pixels tend to access nearby texture image locations), specialized memory caches are used

to reduce memory access time. For hidden surface removal, GPUs implement the depth(Z)-

buffer algorithm. All modern-day GPUs contain a depth-buffer as a dedicated region of

its memory, which stores the distance of the viewer from each pixel. Before writing to the

display, the GPU compares a pixel’s distance with the distance of the pixel that is already

present. The display memory is updated only if the new pixel is closer (see the depth-buffer

algorithm in Chapter 8 for more details).

10.3.2 Shaders and Shader Programming

Note that in the previous discussion, we covered all the pipelines stages in two broad group

of activities—vertex (or geometry) processing and pixel processing. During its early years

of evolution, GPUs used to come with fixed-function hardware pipeline, that is all the stages

are pre-programmed and embedded into the hardware. In other words, a GPU contained

dedicated components for specific tasks. The idea is illustrated in Fig. 10.9. However, in

order to leverage the power of GPUs in a better way, modern day GPUs are designed to be

programmable. Fixed-function units for transforming vertices and texturing pixels have been

replaced by unified grid of processors, known as shaders. All these processing units can be

used to do the calculations for any pipeline stage, as illustrated in Fig. 10.10.

Primitives

2D screen

coordinatesUser

program

Geometry

processing

Pixel

processing

Fig. 10.9 Schematic of a fixed-function GPU stages—the user has no control on how it

should work and what processing unit performs which stage of the pipeline
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GPU

3D geometric primitives

GPU memory (DRAM)

Programmable unified processors

Vertex

program

Geometry

program

Pixel

program

Rasterization
Hidden surface

removal

Fig. 10.10 The idea of programmable GPU. The GPU elements (processing units and

memory) can be reused through user programs.

With a programable GPU, it is possible for the programers to modify how the hardware

processes the vertices and shades pixels. They can do so by writing vertex shaders and frag-

ment shaders (also known as vertex programs and fragment programs). This is known as

shader programming (also known by many other names that include GPU programming and

graphics hardware programming). As the names suggest, vertex shaders are used to pro-

cess vertices (i.e., geometry)—modeling transformations, lighting, and projection to screen

coordinates. Fragment shaders are programs that perform the computations in the pixel pro-

cessing stage and determine how each pixel is shaded (rendering), how texture is applied

(texture mapping), and if a pixel should be drawn or not (hidden surface removal). The term

fragment shader is used to denote the fact that a GPU at any instant can process a subset

(or fragment) of all the screen pixel positions. These shader programs are small pieces of

codes that are sent to the graphics hardware from the user programs, but they are executed

on the graphics hardware. The ability to program GPUs gave rise to the idea of a general

purpose GPU or GPGPU; we can use the GPU to perform tasks that are not related to

graphics at all.

10.4 GRAPHICS SOFTWARE AND OPENGL

The software used for computer graphics are broadly of two types—special-purpose pack-

ages and general programming packages. Special-purpose packages are designed for the

non-programmers. These are complete software systems with their own graphical user inter-

face. An example of such a package is a painting system, where an artist can select objects

of various shapes, color them, place them at the desired screen position, change their size,

shape, and orientation, and many more just by interacting with the interface. No knowledge

of the graphics pipeline is required. Other examples include various CAD (computer-aided

design) packages used in architectural, medical, business, and engineering domains. A gen-

eral programming package, in contrast, provides a library of graphics functions that are to

be used in a programming language such as C, C++, or Java. The graphics functions are
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Graphics so�ware standards

When programs are written with graphics func-

tions, they may be moved from one hardware

platform to another. Without some standards (i.e.,

a commonly agreed syntax), this is not possible

and we need to rewrite the whole program. In

order to avoid such problems and ensure porta-

bility, efforts were made to standardize computer

graphics software. The first graphics software

standard was developed in 1984, known as the

graphics kernel system or GKS. It was adopted

by the ISO (International Standards Organization)

and many other national standards bodies.A sec-

ond standard was developed by extending GKS,

known as the PHIGS (programmer’s hierarchical

interactive graphics standard), and adopted by

standards organizations worldwide.

While GKS and PHIGS were being developed,

the Silicon Graphics Inc. (SGI) started to ship

their graphics workstations with a set of routines

called graphics library (GL). The GL became very

popular and eventually evolved as the OpenGL

(in the early 1990s), a de-facto graphics stan-

dard. It is now maintained by the OpenGL Archi-

tecture Review Board, a consortium of repre-

sentatives from many graphics companies and

organizations.

designed to perform various tasks that are part of the graphics pipeline such as object defini-

tion, modeling transformation, color assignment, projection, and display. Examples of such

libraries include OpenGL (Open source Graphics Library), VRML (Virtual-Reality Mod-

eling Language), and Java 3D. The functions in a graphics library are also known as the

computer graphics application programming interface (CG API) since the library provides

a software interface between a programming language and the hardware. So when we write

an application program in C, the graphics library functions allow us to construct and display

a picture on an output device.

Graphics functions in any package are typically defined independent of any program-

ming language. A language binding is then defined for a particular high-level programming

language. This binding gives the syntax for accessing various graphics functions from that

language. Each language binding is designed to make the best use of the capabilities of

the particular language and to handle various syntax issues such as data types, parameter

passing, and errors. The specifications for language bindings are set by the International

Standards Organization. In the following, we learn the basic idea of a graphics library with

an introduction to OpenGL, a widely-used open source graphics library, with its C/C++

binding.

10.4.1 OpenGL: An Introduction

Consider Fig. 10.11, showing the program for displaying a straight line on the screen written

using the OpenGL library functions in C. As you can see, there are several functions in the

program. Let us try to understand each line of the code.

GLUT Library

The first thing we do is to include the header file containing the graphics library functions.

Thus, the very first line in our program is

#include<GL/glut.h>
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#include<GL/glut.h>

void init (void){

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_PROJECTION)

gluOrhto2D (0.0, 800.0, 0.0, 600.0)

}

void createLine (void){

glClear (GL_COLOR_BUFFER_BIT);
glColor3f (0.0, 1.0, 0.0);

glBegin (GL_LINES);
glVertex2i (200, 100);
glVertex2i (20, 50);

glEnd ();

glFlush ();
}

void main (int argc, char** argv){

glutInit (& argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (0, 0);
glutInitWindowSize (800, 600);
glutCreateWindow ("The OpenGL example");

init ();
glutDisplayFunc (createLine);
glutMainLoop ();

}

Fig. 10.11 Example OpenGL program

The OpenGL core library does not provide support for input and output, as the library

functions are designed to be device-independent. However, we have to show the line on the

display screen.Thus, auxiliary libraries are required for the output, on top of the core library,

which is provided in the GLUT or OpenGL Utility Toolkit library. GLUT provides a library

of functions for interacting with any screen-windowing system. In other words, the functions

in the GLUT library allow us to set up a display window on our video screen (a rectangu-

lar area on the screen showing the picture, in this case the line). The library functions are

prefixed with glut. Since GLUT functions provide interface to other device-specific window

systems, we can use GLUT to write device independent programs. Note that GLUT is suit-

able for graphics operations only. We may require to include other C/C++ header files such

as <stdio.h> or <stdlib.h> along with GLUT.

Managing the DisplayWindow: The main() Function

Inclusion of GLUT allows us to create and manage the display window, that is, the region

on the screen where we see the line. The first thing required is to initialize GLUT. This we

do with the following statement.

glutInit (& argc, argv);

After initialization, we can set various options for the display window, using the glu-

tInitDisplayMode function. This function takes symbolic GLUT constants as arguments.
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For example, the following line of code written for the example program specifies that

a single refresh buffer is to be used for the display window and the RGB color mode is

to be used for selecting color values. Note the syntax used to represent symbolic GLUT

constants: the prefix GLUT is added followed by an underscore (‘_’) to each constant

name and is written in capital letters. The two constants are combined using a logical

OR operation.

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

Although GLUT provides for some default position and size of the display window, we

can change those. The following two lines in the example are used for the purpose. As the

names suggest, the glutInitWindowPosition function allows us to specify the window loca-

tion. This is done by specifying the top-left corner position of the window (supplied as

argument to the function). The position is specified in integer screen coordinates (the X and

Y pixel coordinates, in that order), assuming that the origin is in the top-left corner of the

screen. The glutInitWindowSize function is used to set the window size. The first argument

specifies the width of the window. The window height is specified with the second argument.

Both are specified in pixels.

glutInitWindowPosition (0, 0);

glutInitWindowSize (800, 600);

Next, we create the window and set a caption (optional) with the following function. The

argument of the function, that is, the string within the quotation, is the caption.

glutCreateWindow ("The OpenGL example");

Once the window is created, we need to specify the picture to be displayed in the

window. In our example, the picture is simply the line. We create this picture in a

separate function createLine, which contain OpenGL functions. The createLine func-

tion is passed as an argument to the glutDisplayFunc indicating that the line is to be

displayed on the window. However, before the picture is generated, certain initializa-

tions are required. We perform these initializations in the init function (to make our

code look nice and clean). Hence, the following sequence of lines are added to our

main program.

init ();

glutDisplayFunc (createLine);

The display window, however, is not yet on the screen. What we need is to activate it,

once the window content is decided. Thus, we add the following statement. This statement

activates all display windows we have created along with their graphic contents.

glutMainLoop ();

This function must be the last one in our program. Along with displaying the initial graph-

ics, it puts the program into an infinite loop. In this loop, the program waits for inputs from

devices such as mouse or keyboard. Even if no input is available (like in our example), the

loop ensures that the picture is displayed till we close the window.
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Basic OpenGL Syntax

In the main body of the example program, we have mostly the GLUT library functions.

However, in the two functions init and createLine, core OpenGL library functions are used.

The syntax followed by these functions is different from those of the GLUT functions, and

is described as follows.

Each openGL function is prefixed with gl. Also, each component word within the func-

tion name has its first letter capitalized. The naming convention is illustrated in the following

examples.

glClear glPolygonMode

Sometimes, some functions require that one or more of their arguments be assigned sym-

bolic constants. Example of such constants include a parameter name, a parameter value, or

a particular mode. All such constants begin with the uppercase letter GL. Each component

of the name is written in capital letters and are separated by the underscore (‘_’) symbol. A

few examples are shown here for illustration.

GL_RGB GL_AMBIENT_AND_DIFFUSE

The openGL functions also expect specific data types, a 32 bit integer as a param-

eter value, for example. For the purpose, OpenGL uses built-in data type names.

Each name begins with the capital letters GL. This is followed by the data type

name (the standard designations for various data types) written in lower-case letters,

such as

GLbyte GLdouble

Initialization: The init() Function

In the init function, initializations and one-time parameter settings are done. There are three

OpenGL library routines called in this function. The first routine is,

glClearColor (1.0, 1.0, 1.0, 0.0);

This OpenGL routine is used to set a background color to our display window. The

color is specified with the red, green, and blue (RGB) components. The RGB component

values are supplied through the first three arguments, in that order. Thus, in our exam-

ple, we are setting the window background to be white having R = 0.1, G = 0.1 and

B = 0.1 values. If we set all components to 0.0, we will get the color black. If the com-

ponents are set to any other value between 0.0 and 1.0, we get some shade of gray. The

fourth parameter in the function is called the alpha value for the specified color. It is used

as a blending parameter: specifying the way to color two overlapping objects. A value of

0.0 implies the objects are totally transparent and a value of 1.0 indicates totally opaque

objects.

Although we are displaying a line, which is a 2D object, OpenGL does not treat 2D pic-

ture generation separately. It treats 2D pictures as a special case of 3D viewing. So the

entire 3D pipeline stages has to be performed. In our example, therefore, we need to specify

the projection type and other viewing parameters. These are done with the following two

functions.
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glMatrixMode (GL_PROJECTION)

gluOrhto2D (0.0, 800.0, 0.0, 600.0)

Note that although the first function is an OpenGL routine (prefixed with gl), the sec-

ond function is pefixed with glu. This indicates that the second function is not part of the

core OpenGL library. Instead, it belongs to the GLU or the OpenGL Utility, an auxiliary

library that provides routines for complex tasks including setting up of viewing and projec-

tion matrices, describing complex objects with line and polygon approximations, processing

the surface-rendering operations and displaying splines with linear approximations. Together

the two functions specify that an orthogonal projection is to be used to map the line from the

view plane to the screen. The view plane window is specified in terms of its lower-left (0.0,

0.0) and top-right corners (800.0, 600.0). Anything outside this boundary will be clipped out.

Creating the Picture: The createLine() Function

This is the function that actually creates the line. The first line of the function is,

glClear (GL_COLOR_BUFFER_BIT);

With this OpenGL function, the display window with the specified background color is

put on the screen. The argument, as you can see, is an OpenGL symbolic constant. It indi-

cates that the bit values in the color (refresh) buffer are to be set to the background color

values specified in the glClearColor function.

While we can set the background color, OpenGL also allows us to set the object color.

This we do with the following function.

glColor3f (0.0, 1.0, 0.0);

The three arguments are used to specify the R, G, and B components of the color, in that

order. The suffix 3f in the function name indicates that the three components are specified

using floating-point (f ) values. These values can range between 0.0 and 1.0. The three val-

ues we used in the example denote the green color (as the other two components have values

0.0 each).

Finally, we need to call the appropriate OpenGL routines to create the line segment. The

following piece of code performs just that: it specifies a line segment between the end points

(200, 100) and (20, 50).

glBegin (GL_LINES);

glVertex2i (200, 100);

glVertex2i (20, 50);

glEnd ();

The two line end points (vertices) are specified using the OpenGL function glVertex2i.

The suffix 2i indicates that the vertices are specified by two integer (i) values denoting their

X and Y coordinates. The first and second end points are determined depending on their

ordering in the code. Thus, in the example, the vertex (200, 100) is the first end point while

the vertex (20, 50) acts as the second line end point. The function glBegin with its symbolic

OpenGL constant GL_LINES along with the function glEnd indicate that the vertices are

line end points.
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With all these functions, the basic line creation program is ready. However, the functions

we used may be stored at different locations in the computer memory, depending on the

implementation of OpenGL. We need to force the system to process all these functions. This

we do with the following OpenGL function, which should be the last line of our picture

generation procedure.

glFlush ();

SUMMARY

In this chapter, we learnt about the underlying hardware in a graphics system. There are three

components of the hardware—the input devices, the output devices, and the display controller.

The most common graphics output devices are the video monitors. Various technologies are

used to design monitors. The earliest of those are the CRT, which we have already discussed in

Chapter 1. In this chapter, we learnt about flat panel displays. Broadly, they are of two types. In

the emissive displays, elctrical energy is converted to light energy, similar to a CRT. Examples

include plasma panels, LEDs, and thin-film electroluminescent displays. In non-emissive dis-

plays, external light energy is used to draw pictures on the screen. The most popular example

of such displays is the LCD. Hardcopy devices are another mode of producing graphics output.

Such devices are of two types: printers are used to produce any image including alphanumeric

characters on paper, while plotters are used for specific drawing purpose. Input devices are

mainly used for interactive graphics. Many such devices exist. Most common are the mouse

and keyboards. Other input devices include joystick, trackball, data gloves, and touch screens.

The display controller or the graphics card contains a special-purpose processor and a mem-

ory tailor-made for graphics. The processor is called the graphics processing unit or GPU. It

consists of a large number of simple processing units or cores,organized in the form of stream-

ing multiprocessors. The organization allows a GPU to perform parallel processing in SIMD

(single instruction multiple data) mode.Modern-day GPUs allow general-purpose programming

of its elements. This is done through shader programming. The vertex shaders are programs

that allow us to process vertices while the fragment shaders allow us to process pixels the way

we want.

We also got introduces to the graphics software. We learnt about the role played by graphics

libraries in the developement of a graphics program and learnt the basics of a popular graphics

library, the OpenGL, through an example line-drawing program.

Sherr [1993] contains more discussions on electronic displays. Tannas [1985] can be used for

further reading on flat-panel displays and CRTs. Raster graphics architecture is explained in

Foley et al. [1995]. Grotch [1983] presents the idea behind the 3D and stereoscopic displays.

Chung et al. [1989] contains work on head-mounted displays and virtual reality environments.

More on GPU along with examples on programming the vertex and fragment processors can

be found in the GPU Gems series of books (Fernando [2004], Pharr and Fernando [2005]).

For additional details on writing program using a shading language, refer to the OpenGL
TM

Shading Language (Rost [2004]).The website www.gpgpu.org is a good source for more infor-

mation on GPGPU. A good starting point for learning OpenGL is the OpenGL Programming

Guide (Shreiner et al. [2004]).

BIBLIOGRAPHIC NOTE
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KEY TERMS

Computer graphics application programmers interface (CG API) – a set of library functions

to perform various graphics operations

Data glove – an input device, typically used with virtual reality systems, for positioning and

manipulation

Dot-matrix printer – a type of impact printer

Emissive display – a type of display that works based on the conversion of electric energy into

light on screen

Fixed-function hardware pipeline – all the pipeline stages are pre-programmed and embedded

into the hardware

Flat panel – a class of graphics display units

Fragment shaders (programs) – hardware programs to assign colors to pixels

GPU – the graphics processing unit, which is typically employed for graphics-related operations

Graphical kernel standard (GKS) – an early standard for graphics software

Impact printer – a printer that works by pressing character faces against inked ribbons on a paper

Joystick – an input device for positioning

Keyboard – an input device for characters

LCD – a type of flat panel non-emissive display

LED display – a type of flat panel emissive display

Mouse – an input device for pointing and selecting

Multicore – multiple processing units connected together

Non-emissive display – a type of display that works based on the conversion of light energy to

some onscreen graphical patterns

Non-impact printer – a printing device that uses non-impact methods such as lasers, ink sprays,

electrostatic, or electrothermal methods for printing

OpenGL – an open source graphics library, which has become the de-facto standard for graphics

software

PHIGS (Programmer’s Hierarchical Interactive Graphics Standard) – a standard for graphics

software

Plasma panel – a type of flat panel emissive display

Plotter – a type of hardcopy output device

Printer – a type of hardcopy output device.

Programmable GPU – a GPU where pipeline stages are not fixed and can be controlled

programmatically

Shader – a grid of GPU processors to perform specific stages of graphics pipeline

Shader programming/GPU programming/Graphics hardware programming – programs to

manipulate shaders

Spaceball – an input device for positioning

Stream processor – a processor that work on data streams

Streaming multiprocessor – a group of stream processors

Thin-film electroluminiscent display – a type of flat panel emissive display

Touch screen – gestural input systems

Trackball – an input device for positioning

Vertex shaders (programs) – hardware programs to process vertices

EXERCISES

10.1 What are the major components of a graphics system?

10.2 Discuss the difference between emissive and non-emissive displays.



i

i

“Chapter-10” — 2015/9/15 — 13:14 — page 214 — #21
i

i

i

i

i

i

214 Computer Graphics

10.3 Explain, with illustrative diagrams, the working of the plasma, LED, and thin-film electrolu-

minescent displays?

10.4 How do LCDs work? Explain with schematic diagrams.

10.5 Mention any five input devices.

10.6 Why si GPU better suited for graphics operations than CPU? Discuss with a suitable

illustration.

10.7 Explain the implementation of 3D graphics pipeline on GPU.

10.8 Explain the concept of shader programming. Why is it useful?

10.9 Why do we need graphics standards? Mention any two standards used in computer

graphics.

10.10 In Fig. 10.11, the code for drawing a line segment on the screen is shown. Assume that

we have a square surface with four vertices. The line displayed on the screen is a specific

orthogonal view of the surface (may be top view). Modify the code to define the surface

and perform the specific projection. Modify the code further so that the Gouraud shading

is used to color the surface.
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CHAPTER

11 Computer

Animation

Learning Objectives

After going through this chapter, the students will be able to

• Know about the broad issues in animation

• Understand the traditional animation techniques and their relationship to computer

animation

• Get an overview of the four broad classes of computer animation techniques

• Learn about the principles of animation

• Understand the key framing technique

• Get an overview of the animation techniques that use motion capture

• Get introduced to the physics-based and procedural animation techniques

INTRODUCTION

In computer graphics, we are concerned about synthesizing a static image, often known as a

frame. All the stages and algorithms in each stage, which we have learnt so far, are designed

to meet that objective. However, sometimes we are interested in generating a sequence of

frames in a particular way so as to synthesize the perception of motion of the objects in

a frame. Since computer graphics deals with the generation of single frames, it does not

help us decide on the particular sequence. For that, we need additional methods and tech-

niques, which are dealt with in computer animation. In this chapter, we shall learn about

these methods and techniques.

The word animation is derived from the Latin word anima, meaning the act, process,

or result of imparting life, interest, spirit, motion, or activity. Therefore, computer ani-

mation deals with the methods and techniques to display motion using computers. There

are broadly two issues in computer animation—how to impart motion to an object and

how to model collision when multiple objects are in motion in different directions? In

this chapter, we shall learn about methods and techniques used to address the former

(i.e., how to impart motion). The latter issue (about collision detection and modeling)

is very involved and an extensive field of study in itself and lies outside the scope of

this book.
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11.1 TRADITIONAL ANIMATION TECHNIQUES

Animation, as we know, came before the advent of modern-day computers. So, what is the

procedure traditional animators followed? Recall that an animation (whether computer or

not) is a sequence of static images or frames. The sequence is basically a rough sketch of

the layout of the objects in each frame, so that when the sequence is seen by a viewer at an

appropriate speed (i.e., number of frames per second), the viewer perceives that the objects

are moving. The sequence is preplanned by the animator, which is known as storyboard

layout or simply storyboarding. Each frame in the sequence is then hand-drawn by the ani-

mator. This process is often known as the straight ahead method. Clearly, it requires solid

drawing skills to make the animation look appealing and realistic.

Planning of the storyboard layout and then drawing each frame is clearly a very tedious

and time-consuming affair. Computer animation techniques try to reduce the animators, time

and effort by helping to automatically generate most of the frames in the sequence. In order

to do that, several methods and techniques are used, all geared towards making the animation

look realistic. We can classify all of them into the following broad classes.

Keyframing-based animation This idea is borrowed from traditional animation techniques

with certain modifications

Animation using motion capture Motion is synthesized from real-world data captured

using special devices

Physics-based methods Differential equations inspired by the laws of physics are solved

to generate motion

Procedural animation techniques Procedures that approximate complex physical

processes

In the remainder of this chapter, we shall learn about the basic idea behind each of these

techniques; but before that, we shall have a look-at the basic principles that any animation

technique should follow to create realistic animations.

11.2 PRINCIPLES OF ANIMATION

With the advent of powerful computers and computer animation techniques, creating anima-

tion has become much easier than traditional techniques. Consequently, we see numerous

animations around us in the form of games, movies, embedded videos in web pages, and so

on. However, some of these we like while some animations we do not want to watch the next

time. Why is it so? What differentiates a good animation from a bad one?

Typically, animations that have realistic motions are found to be rated good by most view-

ers. Traditional animators for long have been following some rules to make animations look

realistic. In a paper in 1987 (see bibliographic notes), John Lasseter summarized them in the

form of the following broad groups of principles for use in computer animation.

11.2.1 Timing

The most critical component of any animation is the speed or timing of action of the

objects. It actually makes us perceive realism through the perception of weight of the
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objects, their emotional state (if any), and meaning of action. For example, we per-

ceive a slow moving object to be heavier than a fast moving object. Thus, in a realis-

tic animation, objects with different weights should have different movement behavior.

Similarly, same head movement (may be up-down) with different speed can be used to

express two different actions: a fast movement may indicate expressing agreement over

something whereas a slow movement may denote searching for an item vertically in a

bookshelf.

11.2.2 Action Planning and Layout

A good or realistic animation should be able to make it clear to a viewer the idea (such as

action, mood, or meaning) being presented at any instant of motion. This requires a high-

level planning or staging of the action. Such planning helps to draw the viewer’s attention

to the place in the current frame where the important action is taking place. Since our eyes

are good at perceiving relative changes, contrasting motions often help achieve the goal. For

example, a slow moving object draws attention quickly among a group of objects moving in

high speed. Often we are required to put objects in suitable orientations for the purpose, as

illustrated in Fig. 11.1.

At the level of individual objects, each action should be split into three parts: antici-

pation, the action itself, and follow-through. No realistic action can start suddenly. The

preparations involved before the start of an action is the anticipation. Similar to how

it starts, no action ends suddenly. The gradual termination of an action is the follow-

through. For example, a batsman in a cricket match cannot hit a ball with his bat

all of a sudden and then freeze. Certain movements of the batsman’s body, hands,

legs, and head precedes the actual hitting of the ball, which is the anticipation part.

Similarly, the batsman again makes certain motion after hitting the ball, which is the

follow-through part.

Sometimes, the main action often causes one or more overlapping actions. For example,

a fielder may start moving towards the batsman as the batsman prepares to hit the ball. Also,

one action may sometime lead to some secondary action. An example of such secondary

action is the movement of the cloth of a person who is in motion. Both of these are impor-

tant to make the motion look natural. However, it is important that the secondary action is

not allowed to dominate the main action.

B

A Direction of

movement of B

Side view Front view

B

Fig. 11.1 The idea of performing staging by managing object arrangment and orientation.

In the left figure (side view), the particular arrangement ensures that any movement of object

B is noticeable, which is not possible in the case of the arrangement in the right figure (front

view).
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11.2.3 Animation Techniques

While timing and action planning are two important aspects of a realistic animation, they

are not all. Unless we use suitable animation techniques, the realistic effect may not be

evident. Several such techniques are there. One of the important ones is called the squash

and stretch technique. In this technique, object shape should be changed or deformed to

reflect the nature of motion it is subjected to. Generally, objects tend to get stretched

along the direction of motion and squashed when external forces are applied to it. The

classic example of a bouncing ball, to illustrate the idea, is shown in Fig. 11.2. Note

that the more the speed or external force, the more should be the amount of stretching

or squashing.

Another important technique to consider is the motion trajectory. In reality, it is very

rare to find objects moving in straight lines. Therefore, the motions in a realistic anima-

tion should ideally happen along curved paths or arcs. Also, instantaneous change in speed

is not a realistic phenomenon. Therefore, we should avoid doing the same in animation.

Motions should start and end in a gradual manner. This is known as slow in and out

principle.

As we mentioned before, an animation is nothing but a series of frames or static images.

Traditional animators typically draw all these frames in a straight ahead fashion—starting

with the first frame and drawing the last one after drawing all the intermediate frames in

sequence. In contrast, computer animators can leverage the power of the computer by going

for the pose-to-pose or keyframing technique. In this technique, which we shall learn in

more detail in the next section, only a few frames (known as the keyframes) in the sequence

are created/specified by the animator. Other in-between frames are generated from those

keyframes. Clearly, the technique reduces much effort of the animator.

In order to achieve greater artistic effect, all the aforementioned techniques such as squash

and stretch, arc, and keyframing are sometimes used with some exaggeration (some effects

that typically are not observed in reality). The goal of exaggeration is to make the animation

more appealing to the viewer. Too much complexity or symmetry tends to be less appealing

and realistic animations should avoid those. Moreover, just as a traditional animator should

have solid drawing skills to be able to create realistic good quality animation, a computer

animator should have a good understanding of computer graphics and the animation tools

he uses.

Fig. 11.2 The idea of squash and stretch, illustrated with a ball bouncing from a wall (the

horizontal line below). Notice the change in shape as the ball moves towards the wall and

then bounces back.
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11.3 KEYFRAMING

Early computer animation systems were mainly designed based on the keyframing technique,

which is still used widely. As we have seen in Section 11.2, the technique involves two stages.

In the first stage, the animator specifies some specific frames in the whole sequence of frames

that constitutes the animation. These selected set of frames are known as keyframes. In the

second stage, the computer determines the intermediate or in-between frames. The idea is

illustrated in Fig. 11.3.

In fact, the term keyframe is a misnomer in the context of computer animation. What the

animator specifies is not a complete frame or image. Instead, it is basically a set of parameter

values (e.g., current position of object centers, color values, light source intensity, modeling

transformations between different object parts, etc.). Such parameters are often called articu-

lation variables. Articulation variable values are typically specified and manipulated through

some interactive interfaces that are part of computer animation tools. From the articulation

variables, corresponding values for the in-between frames are computed using interpolation

techniques. Starting from the simplest, that is linear interpolation, many types of interpo-

lation techniques including the spline interpolation (discussed in Chapter 2) can be and are

used. With interpolation, we can implement the principles of moving in arcs and slow in

and out. The idea of interpolation of motion in the in-between frames from the keyframe

values is illustrated in Fig. 11.4, where the motion of a point is interpolated using linear

interpolation.

Keyframes

The set of frames that 

together constitute the

animation

Fig. 11.3 The idea of keyframing technique. Frames in between the keyframes (called

in-between frames) are generated by the computer.

Keyframes (initial

point position) In-between

frames

Keyframe

(final point

position)

Fig. 11.4 The idea of interpolation-based in-between frame generation. The motion path of

the point is interpolated from the keyframe positions with linear interpolation (the dotted line).



i

i

“Chapter-11” — 2015/9/15 — 9:48 — page 220 — #6
i

i

i

i

i

i

220 Computer Graphics

11.3.1 Character and Facial Animation

Although we can use most of the object-representation techniques we discussed in Chap-

ter 2 in computer animation, the preferred choice to represent human-like characters (also

called articulated figures) is the skeleton1. In skeleton-based articulated figure representa-

tion, atleast two layers are present. The skin or outer layer and the skeleton itself underneath

the skin. A skeleton is a hierarchical tree structure of bone joints modeling the kinematic

behavior of the character. The hierarchy is created by considering each of the skeleton’s

joints as a parent node. The idea is illustrated in Fig. 11.5.

In order to synthesize motion of a skeleton, we can apply the forward kinemat-

ics method. In this method, we actually specify the exact motion parameters for each

joint in the keyframes. Such parameters may include position, velocity, and accelara-

tion. From these parameter values, the computer determines the position of the joints

in the in-between frames. Let us try to understand the concept in terms of a simple

example.

Consider Fig. 11.6. It shows a portion of an articulated figure (actually, one hand of a

human) having three joints. We want to synthesize the motion of lifting the hand. Let us

ignore the velocity and accelation parameters (i.e., it moves with a constant speed). Then, we

can specify a motion path (position) of all the three joints in the keyframes. Next, we apply

interpolation to determine the position of the joints in the in-between frames, as explained

in Fig. 11.4.

Skeleton
Pelvis

Lhip Rhip

Spline

Lshoulder Rshoulder

Lelblow Relbow

Skin

Fig. 11.5 The skeleton representation of an articulated figure. In the left, the two layers of

the representation (skin and skeleton) are illustrated. The right figure shows the hierarchy

representing the skeleton.

1In fact, we can represent any animate or inanimate character other than human using skeleton.
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Keyframes (intial

point position)

In-between

frames

Keyframe (final

point position)

Fig. 11.6 The forward kinematics illustration. In the keyframes, we specify the positions

(motion path) of all the three joints. Using interpolation, the joint position in the in-between

frames are computed.

Usually, the motion parameters for the root node in the skeleton hierarchy are specified

with respect to the world coordinate system. Parameters for the other joints are specified

relative to the root node parameters.

Specifying motion behavior at all the joints is sometimes inconvenient and also unneces-

sary for the animator—most of the joints are internal to the skeleton and the animator does

not want to be bothered about those. Instead, the animator may feel it more convenient to

specify motion behavior of only a few of the joints (typically end points of a joint chain such

as the Lelbow in Fig. 11.5) in the keyframes. It is then left to the computer to determine

the movement behavior of all the other joints in the chain to obtain the particular motion

of the end point. Inverse kinematics techniques are used to address this issue. Although the

use of inverse kinematics frees the animator from specifying too many parameters, it has

one important drawback—the determination of intermediate joint movements, from the end

postion specification of a few selected joints, need not always give a unique solution. For

example, an animator may specify in the keyframes the motion paths of the pelvis and two

ankle joints of an articulated human leg and use inverse kinematics techniques to determine

the motion paths of the other joints of the leg (hip and knee joints). However, there may be

multiple ways to move the joints so as to get to the final position and all of them need not be

realistic (although mathematically correct). Consequently, the output (i.e., what the viewer

sees) may be affected.

How is the skeleton linked to its skin? Typically, each skin point is associated with the

nearest joint in the skeleton. Whenever there is a joint movement, the skin point is moved

by the same amount. It should be remembered that a viewer does not get to see the skeleton.

only the changes in the skin points are visible. Thus, skeleton is essentially a data structure

which is used to render the skin.

Similar to articulated figures, special techniques are used to animate human faces. The

static shape of a face can be characterized by a relatively small set of conformational param-

eters such as the nose length, width of the jaws, eye to forehead distance, and so on. In order

to represent the dynamic face shape, another small set of expressive parameters, such as

rigid head rotation amount, width of the open eyes, movement of feature points from static

position, etc., can be used. By combining these two sets of parameters in different possible

ways, we can generate various expressive faces in an animation. The use of parameters also

makes it suitable for keyframing, since the in-between parameter values can be interpolated

from the keyframe values. Another widely-used approach for facial animation is known as

the facial action coding system or FACS. In this approach, a facial expression is considered

to have resulted from the combination of a set of elementary motions known as the action
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units (AU). Examples of AU include stretching the lips, raising the inner brow, wrinkling the

nose, and so on. The AUs were determined from extensive psychological research. When

combined, a subset of AUs can generate a specific facial expression.

11.3.2 Deformation

In most animations, we can see that the shape of objects gets changed. Sometimes the whole

object shape gets changed; sometimes only a part of it changes. As an illustration, consider

Fig. 11.7. In Fig. 11.7(a), the whole object shape changes whereas in Fig. 11.7(b), only a

portion gets changed. Such change in shape is called deformation. Another popular term is

morphing, which is a shortened form of the word metamorphosing.

Deformation can be implemented with a simple idea. Any shape can be thought of as a

set of points (e.g., vertices of triangular mesh or control points of spline surfaces). A defor-

mation function (implemented as transformation matrices) is applied on this set of points,

which moves those points in the in-between frames to different positions (changing the rel-

ative postion between them). This results in the deformed object in the next keyframe. As

an example, consider Fig. 11.8. We want to deform the cube shown in the left to the object

shown in the right side of the figure. This is known as tapering. The particular tapering

can be achieved if we perform the following transformation of each point P(px, py, pz) in

the cube.

P′
=





1 0 0

0 S(px) 0

0 0 S(px)









px

py

pz





The triangular part of the object gets

deformed to a trapezoid. The other

part remains the same.

(a)

(b)

Fig. 11.7 Illustration of deformation in computer animation. In (a), the whole object is

deformed. However, the deformation is done locally in one portion of the object in (b).
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X0

X1X

Fig. 11.8 Example of deformation by applying deformation function on the object points. In

the example, we defined a function (having three components) to deform (taper) the object

on the left side to the object on the right side

where

S(x) =











1 x ≥ x0

1 − 0.5
x−x0
x1−x0

x0 < x < x1

0.5 x ≥ x1

(11.1)

There are two problems with this simple idea: first, it is very difficult to find a proper

function for any arbitrarily complex deformation and second, such a deformation applies to

the whole object. In order to have better control on deformation, we can use a more general

technique known as the free form deformation or FFD. In this, we define a coordinate grid

(or lattice) encapsulating the portion of the object to be deformed. The coordinates of the

object points lying in this grid are recomputed with respect to the grid. We then distort the

lattice points in the desired way (by applying some transformation function on the grid).

The distorted lattice points are then used as control points to interpolate new object points

from the old object point coordinates computed using the undistorted lattice. The idea is

illustrated in Fig. 11.9.

Fig. 11.9 The idea of FFD
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11.4 MOTION CAPTURE

The objective of the techniques such as keyframing, forward and inverse kinematics are to

help in generating realistic motion. However, even with such techniques, our abilities to

impart realism to computer animation are limited. This is particularly so when we are ani-

mating articulated figures. There are certain aspects of physical motion of such articulated

figures, which are subtle and difficult to model, but a small deviation from which makes the

motion looks unrealistic. It takes a good amount of animator skills to model such subtlity. It

is sometimes easier to record and map the motion of a real object (called subject or talent)

to a synthetic object than to synthesize the whole motion itself. This is known as motion

capture. It involves sensing, digitizing, and recording an object’s motion and mapping it to

the object model (usually skeleton). Although typically used to capture human motion, such

techniques can also be used to synthesize non-human articulated figures also, which can be

represented using skeletons. Presently, there are broadly two ways to capture the motion of

an object—electromagnetic sensors and optical markers.

In electromagnetic tracking, often called magnetic tracking, sensors are placed at the

joints of the subject that transmit their positions and orientations back to a central processor

to record their movements. However, in the presence of other objects, it is posssible that the

transmitted information is not accurate due to interference. Also, the transmission of sen-

sory information can be performed through cables, which requires the subject to attach many

cables to his/her body, a very inconvenient arrangement. An alternative is to wirelessly trans-

mit the information. In such case, subjects need to carry a battery pack as a power source

for the wireless transmitter; not very convenient either. Nonetheless, if such inconveniences

are overlooked and the data collected in a noise-free environment, the data obtained can be

used to capture motion with a very high degree of accuracy.

In the second approach, namely motion capture using optical markers, the instrumen-

tation requirement is very convenient for the subject. A subject has to wear only some

reflective markers (brightly colored objects such as table tennis balls or colored tapes) on

his cloth. The markers are usually placed near the joints. For better accuracy, additional

markers may also be placed at mid-joint (middle of two joints) positions. Then, the subject’s

movement is videographed, using either two or more cameras. The image frames in each

video are then analyzed to locate the markers and their dispalcement across frames. Also,

3D marker positions are reconstructed from the multiple views. From all these information

pertaining to the markers’ movement, the joint movements in a skeleton model of the sub-

ject are determined (since each marker is associated with a joint) for specific motions (e.g.,

slow walking). If the number of markers or the frame rate of the video capturing instru-

ment is less, inverse kinematics techniques are used to interpolate joint movements from

the joint positions captured in the video. Although the subject does not require any instru-

mentation (other than wearing the markers) in this technique, the technique is less accurate

than the magnetic tracking methods. There are many reasons for low accuracy including

the limitations of image and video processing techniques and the marker occlusion prob-

lem (i.e., some markers are occluded by others during the subject’s motion). In spite of that,

the method is low-cost and easier to implement, making it the method of choice for many

computer animators.
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11.5 PHYSICALLY BASEDMETHODS AND PROCEDURAL TECHNIQUES

In the previous sections, we discussed ways to determine the position and orientation of each

object in each frame of a computer animation (through interpolation). We assumed that the

relative movement of objects with respect to each other in a frame is automatically taken

care of. However, such relative movements are sometimes very important to perceive real-

ism; some animators may be more concerned about such things than the exact position and

orientation of objects. By maintaining a relationship among objects in a frame, what the ani-

mator achieves is physical realism. Physical realism is achieved through the use of physical

forces on objects, governed by the laws of physics. The animation techniques, which model

the process of application of forces to generate a motion, is known as the physically based

animation. It should be remembered, however, that the term need not always refer to some

real physical process. Unrealistic forces may be used to generate some creative animation

effect. For example, a cricket ball may move towards the batsman on its own, rather than

after being thrown by a bowler.

The physical laws are typically modelled using partial or, in some simple cases, ordi-

nary differential equations. Therefore, in order to model motion that is produced by

the application of the laws of physics, we need to solve the differential equations. In

fact, it was one of the original goals of computers to solve such equations and var-

ious efficient numerical methods have been developed over the years. We can make

use of those methods in the physically based animation. Nonetheless, such methods

are expensive in terms of computation time and required resources. Consequently, these

methods are typically used in situations where all other methods have failed to pro-

duce sufficiently good realistic effects or we have very good hardware in terms of

processing power.

In fact, it is very important to determine when to use physically based animation as things

may sometimes become hard to decide. Consider for example the modeling of a wrinkled

cloth. We can actually characterize common types of wrinkles and where they occur on a

piece of cloth by studying several examples. We can use this information to determine suit-

able wrinkles at appropriate places on an animated cloth. This imposition of wrinkles on the

cloth, clearly, is less computationally expensive. However, it lacks flexibility. We can gener-

ate only the wrinkles that we have modeled. On the other hand, we can actually model the

physics behind the formation of wrinkles: the stresses and strains of the individual threads of

the cloth. If we apply the physical process on the synthetic cloth model, wrinkles will appear

automatically, as the strands of the cloth moves according to the underlying physics. Thus,

the wrinkles are not imposed in this case. Clearly, this physics-based approach is more flexi-

ble since any type of wrinkles can be generated. However, computation of individual threads

of a cloth, after they are subjected to stress and strain due to the outside forces, is very

expensive. Therefore, if we are looking for high-degree of realism, we should go for the

latter. Otherwise, the former approach is alright since it produces an acceptable output at a

much lesser cost.

It is obvious that the imposition of wrinkle patterns on a cloth is actually an approxima-

tion of the complex physical process underneath. We can implement such approximation

with a procedure or a set of rules. In our example, such rules may indicate where to place
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the wrinkles, how many wrinkes, length of each wrinkle, and so on. Consequently, such

approximations are often called procedural techniques.

SUMMARY

In this chapter, we learnt about the basic idea of computer animation. An animation is a

sequence of static images or frames. In traditional animation, all these frames have to be hand-

drawn by the animator, which is a tedious and time-consuming process. In contrast, in computer

animation, an animator merely specifies a small subset of keyframes (in reality, a set of param-

eter values rather than a complete image). The other in-between frames are generated by the

computer by interpolating the keyframe values. This is known as keyframing, which saves much

time and effort of the animator.

Although much work of a traditional animator is taken care of by the computer in computer

animation, the guiding principles to generate a realistic animation remains the same. Such prin-

ciples include timing, staging, anticipation, follow-through, overlapping and secondary actions,

squash and stretch,arcs,slow in and out,straight ahead and pose-to-pose,exaggeration,appeal,

and solid drawing skill. Specification of keyframes and algorithms to generate in-between

frames should take into account these principles; otherwise the animations may not look

realistic.

An important concept in computer animation is the idea of deformation—changing the shape

of objects across frames (either wholly or partially). The idea is simple: apply some deforma-

tion function on the object definition (a set of points) so as to move the points to appropriate

position in the in-between frame, so that we get the deformed object. However, finding such

functions are often difficult and also they deform the whole object. Free form deformation tech-

niques are used to locally deform objects through the use of an encapsulating lattice (or grid

of points).

Animation of characters or articulated figures, primarily human, are done through the use of

special representation technique called skeleton. A skeleton is a hierarchy of joints connect-

ing the bones. A layer of skin encapsulates the skeleton. Using forward and inverse kinematics

techniques,movement of skeleton joints is synthesized.A mapping technique maps such move-

ment to the movement of outer skin, which is what the viewer gets to see. Similarly, special data

structures and operations are used to generate (human) facial animation: either through the

use of a set of conformational and expressive parameters or a set of action units. Genera-

tion of facial animation using the latter technique is known as the facial action coding system

or FACS.

Apart from keyframing, many other techniques are used to create computer animation.

Motion capture is another widely used method, in which the motion of a subject is cap-

tured (using electromechanical or optical sensors) and then mapped to a representation of

the subject (usually a skeleton) to synthesize motion. The electromechanical sensor-based

motion capture performs well in terms of accuracy in a noise-free environment. However,

such methods are costly in terms of equipment and are inconvenient for the subject (since

various instruments need to be attached to them). On the other hand, optical sensor (marker)-

based systems are easy to implement and do not inconvenience the subject; however, their

accuracy is less.

Sometimes, in order to synthesize realism, physics-based animation techniques are

used. Such techniques require solving differential equations. Consequently, they are

computation-intensive and require special hardware. Many of these techniques (rather

their approximtions), however, can be implemented with procedural methods, which

require less computation although the flexibility (in terms of the effect generated)

is less.
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Parent [2008] contains a more detailed introduction to computer animation. Principles of com-

puter animation are summarized in Lasseter [1987]. More on key-framing, which is used in

most of the early computer animation systems, can be found in Burtnyk and Wein [1971],

Burtnyk and Wein [1976], Catmull [1978], and Reeves [1981]. Free-form deformation is pre-

sented in Sederberg [1986]. For more information on the use of forward and inverse kine-

matics in articulated figure animation, see Ribble [1982] and Welman [1993]. The facial

action coding system is described in Ekman and Friesen [1978] (also see the web site

http://www.cs.cmu.edu/~face/facs.htm).Menache [2000] discusses motion capture in computer

animation. For various physically based models and procedural techniques, refer to Parent

[2008].

BIBLIOGRAPHIC NOTE

KEY TERMS

Action units (AU) – a set of elementary motions which forms the basis of FACS

Anticipation – the preparation before the start of an action in an animation

Arcs – object motion paths in realistic animations

Articulation variables – a set of parameter values used to define keyframes

Conformational parameters – a set of parameters used for animation of human faces

Deformation – change in object shape in animation

Deformation function – a function to deform object/object portion

Expressive parameters – a set of parameters used for facial animation

Facial action coding system (FACS) – a widely used facial animation technique

Follow through – the gradual termination of an action in an animation

Forward kinematics – determination of skeleton joint positions in the in-betweens from the motion

parameter values at keyframes

Free form deformation (FFD) – a technique for deformation in computer animation

In-betweens – the frames between keyframes

Inverse kinematics – estimating motion path of intermediate joints from the end joint positions in

the keyframes

Keyframes – a set of impotant frames in the sequence of frames that constitute an

animation

Morphing – generating a new shape from another shape

Motion capture – capturing motion of a real object for use in computer animation

Overlapping action – multiple actions that take part simultaneously in an animation

Secondary action – an action that is the result of another action

Skeleton – a hierarchical data structure of bone joints modelling the kinematic behaviour of an

object

Slow in and out – gradual start and end of a motion in an animation

Squash and stretch – an animation technique in which an object shape is changed or deformed

to reflect the kind of motion it is subjected to

Staging – high-level action planning

Storyboarding – the process of designing the sequence of frames for animation

Straight ahead method – the hand-drawing of frames in an animation sequence

http://www.cs.cmu.edu/~face/facs.htm
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EXERCISES

11.1 Mention the stages of animation. How is it related to computer graphics?

11.2 Explain the idea of keyframing. Does the animator draw a set of frames in this technique?

11.3 Mention the principles of animation. How do the principles help computer animators?

11.4 Explain the basic idea of deformation. Why is FFD advantageous?

11.5 Mention and explain the steps in articulated figure animation.

11.6 Discuss, with an illustrative example, the idea of inverse kinematics.

11.7 What are the action units in FACS. How do they help in facial animation?

11.8 Mention the two types of motion capture techniques. Can we say optical sensor-based

tracking is better than magnetic tracking?

11.9 Discuss, with an example other than the one given in the text, when we require physics-

based animation.

11.10 Describe an illustrative example of procedural technique. Why are such techniques useful

in computer animation?
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12 Multimedia and

Hypermedia

Learning Objectives

After going through this chapter, the students will be able to

• Get an overview of the field of multimedia and its broader aspects

• Understand the concept of hypermedia

• Learn about multimedia authoring tools and techniques

• Understand the techniques for storage and manipulation of audio and video data by a

computer

• Get an overview of the data compression—both lossy and lossless

• Learn about the JPEG image compression standard

• Understand the H.261 digital video compression standard

• Learn about the MPEG standard

INTRODUCTION

In Chapter 11 we discussed one of the most important applications of computer graphics:

computer animation. In this chapter, we shall learn the fundamental concepts of multimedia,

another important application area of computer graphics. The term multimedia is used to

refer to many things. Factually, it refers to some content or media represented in various

forms combined together. The various forms include text, image, drawing, animation, video,

and sound (including speech). This is in contrast to contents that use a single form of rep-

resentation such as text display on the computer screen or video without audio. However,

when we use the term, we are implicitly referring to applications that use multiple modali-

ties such as text, image, drawings, animation, video, and audio to their advantage along with

interactivity of some kind.

Since the media consists of various forms, we require multiple information processsing

devices to record, play, display, or access the content. Together, these devices form a mul-

timedia system. In fact, most computing systems we see around us today are examples of

multimedia systems. These systems represent convergence of multiple technologies devel-

oped over a period of time: PCs, DVDs, computer games, digital TV, set-top web surfing,

wireless networks, and so on. This convergence, in a sense, points to the coming together
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of various formerly disparate and unrelated fields of study such as computer graphics,

visualization, human-computer interaction, computer vision, data compression, graph the-

ory, computer networking, database systems, and so on. Note that although we mentioned

multimedia to be an application area of computer graphics, it is much more than that. Com-

puter graphics is only one of the many components. In that sense, multimedia is different

from animation.

There are many aspects of a multimedia system. We can group them into four major

categories.

Content creation As we saw, multimedia involves many types of media put together to

create single content. How we create the various forms and link them to get multimedia

content is a major concern. The multimedia authoring tools play an important role here.

Representation In order to store multimedia contents, we need to represent them. There

are various representation standards (file formats) for graphics and image data such as the

BMP. Similarly, we have standards for audio and video contents as well. However, multime-

dia data is typically very large (owing to the presence of various media). In order to store the

data using minimum space and transmit it using low bandwidth, the data is usually repre-

sented in a compressed form. Many compression standards are available for images as well

as video and audio (e.g., JPEG, MPEG).

Search and retrieval Often, we need to retrieve a particular content from a huge database,

for example, searching for specific images from web pages on the Internet. Obviously, we

need to have a proper database management system for managing searching and retrieval.

Transmission and delivery In most multimedia applications, the objective is to transfer

multimedia content over a network. A typical example is the Internet. Whenever we open a

web page, we get to see text, image, embedded animations, and video links. In other words,

we access multimedia contents from a server. Consequently, it is important to deal with

the network issues (e.g., protocols, streaming, server design, QoS, etc.) arising out of this

transmission and delivery requirements.

The broad issues mentioned here are very specialized and involve complete top-

ics in themselves. A detailed discussion on these topics is beyond the scope of this

book. Instead, we shall focus on a few important aspects of multimedia systems includ-

ing the basic concepts in digital video and audio, data compression techniques, and

some popular compression standards, and multimedia authoring. We shall begin by

first discussing the meaning of the term hypermedia, which is closely associated with

multimedia.

12.1 HYPERMEDIA

Ted Nelson was the first to use the term hypertext in 1965. It basically refers to the way

we interact with textual content. For example, consider a book. We are supposed to read

it from the begining to end, in the sequence. We cannot randomly move between pages. In

other words, we access and read the content linearly. Hypertext is different in the sense

that it allows us to access textual content non-linearly. There are links in the text. When-

ever we select a link, it takes us to another part of the text (or another document). If the
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content consists of other types of media such as audio, video, image, and/or animation in

addition to text (i.e., multimedia content) and the access to various parts of the content is

non-linear, we call it hypermedia. Apparently, this term was also proposed by Ted Nelson.

Thus, hypermedia can be considered to be a particular multimedia application.

The most well known example of hypermedia is the World Wide Web (which we popularly

refer to as the Internet). The web pages we access through a web browser contain multiple

media. Through links, we can access various parts of those contents. A specific protocol

(i.e., standard means of communication) was developed to transfer this multimedia content

over the Internet, which is called the hypertext transfer protocol (HTTP). Although it was

originally designed to transfer hypertext as the name suggests, it supports transmission of

any hypermedia content over the Internet.

In order to publish a hypermedia content on the web (i.e., make it displayable through

web browsers), the hypertext markup language or HTML was developed. With the HTML,

we can put together multiple media, provide links for non-linear access, and perform various

formatting operations of the content, all using the notion of the HTML tags. There is a pre-

defined set of tags in HTML, each dedicated for a specific purpose. The idea of the tag-based

mark-up of content has been extended in the extensible markup language or XML. It allows

a user to define his own tags, rather than forcing him to always use the predefined tag set.

We shall have a closer look-at the HTML in the next section, where we discuss multimedia

authoring.

12.2 MULTIMEDIA AUTHORING

As the name suggests, the objective of multimedia authoring is to create multimedia content

(also known as multimedia production). Any multimedia production begins with a story-

board - the initial idea represented by a series of sketches. These sketches are equivalent

to keyframes of a video. A flowchart organizes the storyboards by inserting navigational

information—the user interaction through which the scene changes. The flowchart phase

is followed by a detailed functional specification—a walkthrough of each scenario of the

production, frame by frame, including all screen actions and user interactions. Finally, the

production is prototyped and tested before the final version is implemented and released for

deployment. Clearly, it is a team effort involving a host of people with specialized skills

such as art director, graphic designer, production artist, producer, project manager, writer,

user interface designer, sound designer, videographer, and animators, in addition to program-

mers. Presentation of the multimedia content is also a very important aspect of production.

The key concerns include graphics style (color combination and lettering), color schemes

to be used, fonts (size, style, spacing, etc.), maintenance of proper color contrast and video

transition design.

Various tools are available to create multimedia content. They may be simple video

creation tools such as Macromedia Flash or a complete production environment such as

Macromedia Director. These tools help us take into account various presentation issues and

also allow us to implement various stages of a production cycle. Multimedia production

with these tools follow some metaphor—abstraction of real world processes/methods. The

following are some of the common authoring metaphors.
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Scripting language metaphor We use a special scripting language, such as the OpenScript

language in the Asymmetrix Learning Systems’ toolbook program, for adding interactivity

(buttons, mouse, etc.) and incorporate conditionals to the multimedia content.

Slide show metaphor Slide shows are one of the popular presentation methods of multi-

media content. They are, by default, linear. Although it is possible to design presentation

in a non-linear way, few practitioners use the option. Example programs are Microsoft

PowerPoint and ImageQ.

Hierarchical metaphor Sometimes, user-controllable elements are organized into a tree

structure. These are typically found in menu-driven applications.

Iconic flow-control metaphor Authoring systems that are based on flow-control metaphor

provide icon libraries in the form of toolboxes. Authoring proceeds by creating a flowchart

with the icons. An example of such authoring systems is the Macromedia Authorware.

Frames metaphor This is similar to the flow-control metaphor. However, the links in the

flowchart are more conceptual than simply representing the program flow. An example is

Quest by Allen Communications.

Card/Scripting metaphor Many multimedia production systems are designed around the

concept of card stacks. A simple index-card structure is used for the content creation.

Since links are available, it is easier to create hypermedia content. An early example of

such systems was the HyperCard by Apple. Another popular example is the hyperStudio by

Knowledge Adventure.

Cast/Score/Scripting metaphor In some multimedia production systems, time is depicted

in a horizontal fashion with rows or tracks representing instantiation of characters. This is

similar in nature to a music score. Multimedia elements are drawn from a cast of characters.

A script is used to represent the overall flow of events. Macromedia director is an example

of such systems.

An important issue in hypermedia authoring is the link management: how to create non-

linearly navigable content. This is typically done using some form of markup language such

as HTML. HTML is a language for publishing hypermedia on the World Wide Web (i.e.,

making them viewable through the web browsers). Any HTML document is divided into

two parts: HEAD and BODY. A typical HTML document structure is,

<HTML>

<HEAD>

. . .

</HEAD>

<BODY>

. . .

</BODY>

</HTML>
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Note the use of the ASCII strings inside parenthesis such as <HTML>. These are known

as tags. Tags specify the structure of the content as well as the way the content is to be dis-

played and accessed. Apart from the overall structure, the document elements—text, image,

and video—are also described using tags. In general, the tags are in the form <token param>

to define the start point of a document element and </token> to indicate end of the element.

Some elements may not require the ending tag. As an illustration, consider the following

HTML document source.

<HTML>

<HEAD>

<TITLE>

An illustrative HTML document.

</TITLE>

<META NAME = author name CONTENT = foo bar>

</HEAD>

</BODY>

<P>

This is an example text to demonstrate the idea of a paragraph

element.

</P>

</BODY>

</HTML>

What we have demonstrated above is a simple example to illustrate the idea. The basic

idea is to use a predefined set of tags. In XML, tags are not predefined. Instead, the program-

mer can define his/her own tag. This helps in creating logical separation between contents

of different nature though they may be rendered in the same way. Another popular example

of a markup language is the rich text format (RTF).

12.3 COMPONENTS OFMULTIMEDIA

As we have already seen, multimedia components include image, text, and animation. In

the previous chapters, we saw how these are represented and manipulated in a computer.

Apart from the image, text, and animation, the other two major multimedia components are

video and audio. Let us learn how we can store and manipulate video and audio media in a

computer.

12.3.1 Basics of Digital Audio

We can define audio (or sound) to be a wave, resulting from the compression and expan-

sion of air molecules under the action of some physical device. For example, a speaker in

an audio system vibrates back and forth and produces a longitudinal pressure wave that we

perceive as sound. Thus, two things are to be noted. First, sound requires the presence of air

(we cannot have the effect in space). Second, we can represent sound as a pressure wave, that

is, a continuous or analog signal denoting the variation of pressure values (amplitude) over

time. Typically, pressure is converted to voltage levels using some transducer. Therefore, we
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can think of sound also as a variation of voltage level over time. The second point is very

significant from the point of view of storage and manipulation of audio data in a computer.

Since an audio signal is continuous (or analog), we need some way to digitize it, to be

able to store the signal in a computer. Digitization means converting the continuous-valued

signal to a string of discrete numbers (preferably integers). This we can achieve through a

technique called sampling—measuring values at evenly spaced intervals. Usually, the term

sampling refers to the measurement of amplitude values at evenly spaced time intervals. The

rate (i.e., number of samples per unit time) at which the values are measured is known as

sampling frequency. Typical sampling frequencies are between 8 kHz (8000 samples per sec-

ond) to 48 kHz (48000 samples per second). The human ear can perceive sound between the

range of about 20 Hz to as much as 20 kHz (above this level, we enter the ultrasound range).

Apart from keeping in mind the human perceptual ability (the audible range), we also need

to keep in mind the problem of reconstruction of the signal from the samples. This requires

us to sample at an appropriate rate called the Nyquist rate (named after the mathematician

Harry Nyquist). We can think of any signal as a sum of sinusoids. Each of these constituent

signals has its own frequency. Nyquist rate tells us that, in order to be able to reconstruct a

signal from the samples, our sampling rate should be atleast twice the maximum frequency

content in the signal.

Once the sampling is done, the values need to be quantized (i.e., represented in terms of

a sequence of 0s and 1s). The number of bits used to denote each sample determines the

precision of quantization. Typically, 8 or 16 bits per sample are used for quantization.

For playback of the quantized (or digital) sound, we have to convert it back to an analog

signal. There are two broad methods to do so. One is called the frequency modulation or FM

technique and the other is called the wave table synthesis or just the wave method. In the FM

method, sound is synthesized by adding a modulating frequency to a carrier sinusoid. In the

latter method, real sounds are stored in digitized form in memory (called wave tables). These

quantized values are used to recreate sound. Clearly, wave method produces more realistic

sounds; however, the storage requirement is high compared to the FM method.

12.3.2 Digital Video Fundamentals

Recall that we can think of a video as a sequence of images (frames). When this sequence

is played with a specific speed (i.e., number of frames per second), we get the perception of

motion. Therefore, in order to play a video, we need the information about each image in

the sequence and the speed with which we need to display the images one after the other.

Representation of an image is simple—we specify the color values for various pixels. We

then need to specify the change in color values at each pixel position over time, to capture

the speed aspect. This is equivalent to sampling of color values from signals at the specific

time intervals. In other words, we can think of a video as a sampled data from a continuous

signal. Depending on the composition, we can have three types of video signals—component

video, composite video, and S-video.

When the video signal comprises three separate signals for the red, green, and blue

colors, it is called component video. In general, it is not necessary to have the compo-

nent video signals for the red, green, and blue components. Instead, we can use any three
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components equivalent to the red, green, and blue color representation (i.e., other color

models, see Chapter 5). Performance wise, component video gives the best color reproduc-

tion ability. However, it requires more bandwidth to transmit the signal. In composite video,

color (chrominance) and intensity (luminance) signals are mixed into a single carrier wave.

Chrominance is represented as a composition of two color components, usually denoted by

I and Q, or U and V. The first two are taken from the YIQ color model, whereas the last

two are part of the YUV color model. When being transmitted from a source to a destina-

tion, composite video uses only one wire and the color signals are mixed (unlike component

video, where three separate wires are used to transmit the three components). Consequently,

the quality of reproduction can degrade due to interference between the component signals.

However, the channel bandwidth requirement is less. The S-video (separated video or super-

video) is used to balance between the bandwidth requirement and interference effect. Two

wires are used to carry S-video signal—one for luminance and the other for the composite

chromatic signal.

Early digital videos, such as those produced by the Sony or Panasonic recorders, used

to be composite video. Modern digital video generally uses component video. For digital

videos, the red, green, and blue components are typically converted to the equivalent com-

ponents in another color space (model), which is known as the YCbCr color space. We

can represent the relationship between the RGB color space and the YCbCr space in the

following matrix form.





Y

Cb

Cr



 =





0.299 0.587 0.144

−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312









R

G

B



 +





0

0.5

0.5





If the red, green, and blue values are specified within the range [0,1], we use the following

transformation matrix to get the Y, Cb, Cr values in the range [0,255].





Y

Cb

Cr



 =





65.481 128.553 24.966

−37.797 −74.203 112

112 −93.786 −18.214









R

G

B



 +





16

128

128





It has been found that humans see color with much less spatial resolution than black

and white. This implies that, while transmitting the Y , Cb, Cr values for each pixel, it is

not necessary to send all the values. Instead, we can subsample and transmit a lesser num-

ber of values without affecting the visual quality. This is known as chromatic subsampling.

Numeral labels of the form ‘m:n:p’ are used to denote various subsampling schemes, each

scheme defined in terms of a group of four pixels. As an example, consider a subsampling

scheme denoted by ‘4:2:2’. We can interpret the label as follows: we take a group of four

pixels. we number them sequentially from 0 to 3 (i.e., 0, 1, 2, 3). Among these four pixels,

we transmit the Y color value for all four and the Cb and Cr values for the pixels 0 and 2 only.

In other words, we are sending a total of 8 color values (4 Y, 2 Cb, and 2 Cr values) instead

of the total 12 values (4 Y , 4 Cb, and 4 Cr values). Such sampling schemes are commonly

used in the JPEG and MPEG compression standards that we are going to discuss in the next

section.
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12.4 DATA COMPRESSION STANDARDS

Since multimedia involves image, audio, video, and animation, in addition to text, the size

of the data is usually very large. Therefore, it requires more storage space. Moreover, trans-

mitting the data takes up lot of time and bandwidth. In order to overcome these problems,

multimedia data is usually represented in compressed form. We can roughly define compres-

sion as the techniques to reduce the number of bits used to represent data items. A general

scheme for data compression is shown in Fig. 12.1. The original data is used as input to

an encoder, which converts the data to compressed form. The encoder outputs are typically

termed as codes or codewords. Before we want to use the data again, it needs to be passed

through a decoder to decompress it.

If the total number of bits required to represent data before compression is bo and bc

denotes the number of bits required to represent the same data after compression, we define

the compression ratio as bo
bc

. Our objective is to have a codec (encoder/decoder scheme) with

a compression ratio much larger than 1.0. This can be achieved in either of the two ways:

lossy and lossless.

In lossless compression, as the name suggests, we do not lose any information. There

are various techniques to perform lossless compression that include variable-length coding

schemes such as the Huffman coding and adaptive Huffman coding, dictionary-based coding

such as the Lempel-Ziv-Welch (LZW) algorithm, arithmetic coding, and differential coding.

However, the compression ratio is usually low. In multimedia applications where we look

for higher compression ratio, we usually go for lossy compression, that is, we lose some

information during compression.

Lossy compression is typically applied on quantized data. Recall that in multimedia, we

assume signal forms for various data items such as image, video, and audio. We deal with

samples of these signals. These samples are real values, which are quantized, that is, mapped

to a small set of values. The idea is similar to the one we use for intensity representation,

discussed in Chapter 4. We mostly use vector quantization to represent the samples. In a

vector quantization scheme, the compression works on groups of samples or vectors, rather

than individual samples. Each vector is called a code vector and a group of code vectors

representing the signal is called the codebook.

There are broadly two groups of lossy compression techniques: transform coding and pre-

dictive coding. In the transform coding techniques, samples are first transformed into a new

basis space. The transformed samples are then quantized, which is followed by the entropy

coding (lossless compression techniques such as Huffman coding) of the quantized values.

Input data

Output data

Encoder

(compression)

Storage or

network

Decoder

(decompression)

Fig. 12.1 A general data compression scheme
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Examples of transform coding techniques include discrete cosine transform (DCT), inverse

DCT, discrete fourier transform (DFT), and the wavelet transforms. In predictive coding,

previous and/or subsequent decoded data is used to predict the current data. The error

between the predicted data and the real data, together with any extra information needed

to reproduce the prediction, is then quantized and coded. It should be remembered that in

lossy compression, we never get back the original data after decompression. Instead, we get

a close perceptual approximation of the original data. The closeness is determined based on

some distortion measure such as the mean square error measure.

The compression techniques are used to design standards for multimedia video, audio,

and image data. As we shall see, such standards use a combination of lossy and lossless

compressions. In the following, we shall learn about three very popular standards, namely

JPEG (image compression standard), MPEG (audio and video compression standard), and

H.261 (video compression standard).

12.4.1 JPEG Image Compression Standard

As we know, an image is a grid of pixels. Each pixel has its own color values. There is an

interesting property associated with these values—they change relatively slowly across the

image. This property is called spatial redundancy. Image data compression works due to this

property of images. There are various image data compression techniques developed over

the years. The most popular are the JPEG standards including the basic JPEG, JPEG2000,

JPEG-LS, and JBIG. All are based on similar ideas represented by the basic JPEG, which

we shall discuss in this section.

The JPEG is an image compression standard developed by the Joint Photographic Experts

Group. It was formally accepted as an international standard in 1992. The basic steps

involved in the JPEG encoding process are shown in Fig. 12.2.

The encoder works as follows. Assume that we are given an image of any size. That

means, the RGB values of each pixel are specified for the whole image. We first convert it

YIQ/YUV
Image

Transform coding

(DCT)
Quantization

Quantization

tables

Coding

tables

Entropy

coding

Header

Tables

Data

Zigzag

scan

DC
DPCM

RLC
AC

8 × 8 blocks

Fig. 12.2 Schematic of JPEG encoder
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to YIQ or YUV color space, using the corresponding mapping shown here.





Y

I

Q



 =





0.299 0.587 0.144

0.595879 −0.274133 −0.321746

0.211205 −0.523083 −0.311878









R

G

B









Y

U

V



 =





0.299 0.587 0.144

−0.299 −0.587 0.886

0.701 −0.587 −0.114









R

G

B





The JPEG encoder works on each color component separately, using the same procedure.

Each converted image is divided into 8 × 8 blocks. The block size came from the empirical

observation that it is unusual for intensity values to vary widely within the small area of

size 8 × 8. On each image block, 2-dimensional (2D) DCT is applied. The general form of

2D DCT is shown in Eq. 12.1. The transformation is from spatial domain (i, j) to another

(frequency) domain (u, v), with integers u and v running over the same range as i and j.

The constant C(u) or C(v) takes the value
√

2
2

if the argument (u or v) is 0. Otherwise, the

constants take the value 1.

F(u, v) =
2C(u)C(v)
√

MN

M−1
∑

i=0

N−1
∑

j=0

cos
(2i + 1)uπ

2M
cos

(2j + 1)vπ

2N
f (i, j) (12.1)

In Eq. 12.1, f (i, j) is the color value (YIQ or YUV) at the (i, j)th location of the image

block. Note that in each block, M = 8 and N = 8. Thus, i and j vary from 0 to 7. Therefore,

u and v, which varies with i and j, also vary between 0 to 7. Hence, the DCT equation in our

case is given by Eq. 12.2.

F(u, v) =
C(u)C(v)

4

7
∑

i=0

7
∑

j=0

cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16
f (i, j) (12.2)

After the application of DCT on an image block, we get the 8× 8 matrix of values known

as the DCT coefficients (let us denote them by F(u, v)). These coefficients are conceptually

of two types—the DC coefficient (the element at u = 0, v = 0) and the AC coefficients

(remaining elements). The next step in JPEG compression is to quantize the coefficients.

This is done by simply dividing each entry in the coefficient matrix by an integer and

rounding off the result, as shown in Eq. 12.3.

F̂(u, v) = round

(

F(u, v)

Q(u, v)

)

(12.3)

There are standard 8 × 8 quantization matrices available for luminance and chromi-

nance components (Table 12.1). These matrices are determined from psychophysical studies,

which aim to maximize compression ratio while minimizing perceptual losses.

After quantization, we get the quantized matrix F̂(u, v). The matrix represents the quan-

tized DC (row 0, column 0) and AC (remaining elements) coefficients. We encode the AC
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Table 12.1 Standard quantization matrices

(a) For luminance component (b) For chromi-

nance component

(a)

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(b)

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

coefficients using the run length coding or RLC. We first perform a zigzag scan of the AC

coefficients in the quantized matrix and encode the motion path with RLC. In RLC, we

replace the matrix elements with the pairs (RUNLENGTH, VALUE), where RUNLENGTH

indicates the number of zeroes in the motion path (run of zeroes) and VALUE denotes the

next non-zero value after the run of zeroes. Likewise, the DC components of the image

(one for each block) are encoded using the differential pulse code modulation or DPCM. In

DPCM, a predictor maps the DC values to the encoded value. For example, a simple DPCM

predictor for the ith block can be di = dci+1 − dci, in which dci+1 is the DC value of the

(i + 1)th block and dci is the DC value of the ith block, with d0 = dc0. After the coeffcients

are encoded in this manner, an entropy coding scheme (either of Huffman coding and arith-

metic coding), is applied on the coefficients. In order to decode a compressed JPEG image,

we simply perform inverse operations of all the steps involved.

The organization of a JPEG image file is shown schematically in Fig. 12.3. The frame

denotes the image. Each scan in the frame indicates a pass through the pixels (e.g., the red

component). Each scan consists of segments. A segment is a group of 8×8 image blocks. The

frame header contains various information that include bits per pixel, width and height of

image, number of components, unique ID for each component, horizontal/vertical sampling
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Start of image Frame End of image

Tables etc

Tables etc

Header

Header Segment

Block Block Block

SegmentRestart Restart

Scan Scan...

...

...

Fig. 12.3 Organization of JPEG image file

factors for each component, and quantization tables for each component. The scan header

contains information such as the number of components in scan, component ID for each

component, and Huffman/arithmetic coding tables for each component.

12.4.2 H.261 Digital Video Compression Standard

The volume of video data is usually huge—even a modest CIF video with picture reso-

lution of 352 × 288 can have a size of more than 35 Mbps. Such large size has obvious

implications for storage and network communication of multimedia data, necessitating the

need for video data compression. As we discussed before, a video is a sequence of frames.

Since the frame rate of a video is often relatively high and the camera parameters (focul

length, position, viewing angle, etc.) usually do not change rapidly between frames, the

contents of consecutive frames are usually similar. In other words, the video has temporal

redundancy. Video compression works based on this idea of temporal redundancy. There are

several standards available exclusively for video data compression. The eariest of those is

the H.261, on which the subsequent standards (H.263 and H.264) are based. In this section,

we shall learn the basics of H.261. The H.261 standard was developed by the International

Telecommunication Union - Telecommunication Standardization sector (ITU-T) in 1990. It

uses motion compensation for data compression. Let us first try to understand the idea of

motion compensation in video data.

In most videos, the main cause of difference in data values between frames is the motion

of camera and/or objects. This implies that the pixel values between frames do not change

abruptly. There is a gradual change in values that results from the displacement of a group of

pixels from one part of a frame to another part in another frame in the frame sequence. The

idea is illustrated in Fig. 12.4. If we can predict this displacement (amount and direction)

of the corresponding pixels in the frames, we can compensate for the motion (i.e., regen-

erate frames with fewer information). Video compression algorithms that use this idea are
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Motion vector
Center

Target frameReference frame

(N × N macroblock in target frame)

Center (of similar

N × N macroblock)

Fig. 12.4 The basic idea of motion compensation. Groups of pixels are assumed to be

getting displaced across frames. We need to identify the amount and direction of this

displacement (the motion vector).

said to be based on motion compensation (MC). In an MC-based technique, each image

frame is divided into macroblocks of size N × N (typically, we use N = 8 or 16). The MC

is performed at the macroblock level. The current image frame is referred to as the target

frame. For a given target macroblock, we need to determine a source macroblock in a pre-

vious frame, which resulted in the target macroblock after displacement. In other words, we

need to determine a similar macroblock in a previous frame and the displacement amount

and direction. The displacement amount and direction of the reference macroblock to the

target macroblock is known as the motion vector. Determination of the motion vector is a

complex process and various algorithms are used to search for it. When we try to deter-

mine the motion vector from previous reference frame(s), it is called forward prediction. If

the derivation is made from future frame(s), the technique is known as backward prediction.

The difference of the target (predicted) and reference macroblocks is the prediction error. For

MC-based compression, we need to encode only the motion vectors and the difference mac-

roblocks after the first frame, rather than all the frames; they are sufficient for the decoder to

regenerate all the frames.

With the basic idea and terminology of MC discussed here, let us now try to understand

the H.261. The typical frame sequence in H.261 is shown in Fig. 12.5. The frames are divided

I

I

I

P P
P P P P

Viewing order

Fig. 12.5 H.261 frame sequence
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DCT

Quantization

Entropy

coding

Compressed

data

Y

Cb

Cr

I-frame

For each

macroblock

For each 8 × 8

block

Fig. 12.6 Schematic illustration of I-frame coding in H.261

into two categories, intra-frames (I-frames) and inter-frames (P-frames). I-frames are treated

as independent images. Each of these frames are encoded using a transform coding method

similar to the methods used in JPEG. P-frames, however, are not considered to be indepen-

dent. They are coded by forward predictive coding method in which the current macroblock

is predicted from similar macroblocks in the preceding I- or P-frames. Also, the difference

between the macroblocks are coded. In other words, temporal redundacy is exploited only in

the P-frame coding, whereas I-frame coding exploits the spatial redundancy as in JPEG. The

interval between pairs of I-frames is a variable and is determined by the encoder. Ordinary

digital videos usually have two I-frames per second. Motion vectors are measured in pixels

and have a limited range of ±15.

The encoding of the I-frame is depicted in Fig. 12.6. Recall that the video color space

is usually represented with the YCbCr model. For I-frame coding, we assume 16 × 16

Y-frame macroblocks and 8 × 8 Cb and Cr macroblocks. Also, we typically use 4:2:0

chroma sampling. Therefore, an I-frame macroblock consists of four Y block, one Cb block,

and one Cr block. Each 8 × 8 sub-block of these component blocks is encoded using

the same sequence of steps as in JPEG (i.e., DCT, quantization, zigzag-scan, and entropy

coding).

The P-frames are encoded based on motion compensation. A motion vector is determined

for each macroblock in the target frame. The prediction error is determined in terms of a

difference macroblock. Each difference macroblock is composed of four Y , one Cb block,

and one Cr block as in the case of I-frames. Each 8 × 8 sub-block is encoded following the

steps of DCT, quantization, zigzag-scan, and entropy coding. If the prediction error turns

out to be large (more than some acceptance level), the macroblock itself is encoded rather

than the difference. The macroblock in that case is known as the non-motion compensation

macroblock. Along with the difference macroblocks, we also encode the motion vector infor-

mation. We first take the difference of the motion vectors of the preceding and the current

macroblocks. This difference is then entropy-coded. The P-frame encoding is illustrated in

Fig. 12.7.
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DCT

Quantization

Entropy

coding

Compressed

data

Difference

macroblock
Target frame

Macroblock

Matching

macroblock

Reference

frame
Motion vector

For each 8 × 8

block

Y

Cb

Cr

−

Fig. 12.7 Schematic illustration of P-frame coding in H.261

Unlike in JPEG, the quantization step in H.261 does not use values from a quantization

matrix. Instead, a constant known as step_size is used for all DCT coefficients within a mac-

roblock. For the DC coefficients in intra (I)-mode, we use step_size = 8. In all the other

cases, we can use any of the 31 even values in the integer range [2, 62]. Equation 12.4 shows

the quantization step, where QH is the quantized value, DCT is the DCT coefficient and

scale is any integer in the range [1, 31].

QH =







round
(

DCT
8

)

for DC coefficients in intra(I)-mode

round
(

DCT
2×scale

)

for all other DCT coefficients
(12.4)

The H.261 video file (bitstream) structure is shown in Fig. 12.8. The bitstream consists

of four layers: picture, group of blocks or GOB, macroblock and block. The picture layer

information includes picture start code (PSC), a timestamp for the picture (temporal refer-

ence or TR), and picture type (pType) such as CIF or QCIF. Each picture is divided into

regions of 11 × 3 macroblocks. These regions are called group of blocks or GOB. Each

GOB has its start code (GBSC) and group number (GN). The quantizer is specified in GQ.

Each macroblock has its address (indicating its position in the GOB), quantizer (MQ), and

six 8 × 8 image blocks (4 Y, 1 Cb, and 1 Cr). Type indicates whether the macroblock is

inter- or intra-, motion compensated or non-motion compensated. MVD is the motion vec-

tor data, determined from the difference of preceding and current macroblocks. The bitmask

coded block pattern (CBP) is used to indicate the goodness of match to motion estima-

tion. Only well-matched blocks will have their coefficients transmitted. Each 8 × 8 block

starts with the DC value. This is followed by pairs of length of zero-run (run) and the next

non-zero value after the run (level) for AC coefficients. The range of run is [0,63] while

the level has range [−127, 127] and level 6= 0. Each block bitstream terminates with an

end of block.
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Picture layer

GOB layer

Macroblock

layer

Block layer

PSC

GSC

Add Type MQ

DC (run, level) (run, level)

MVD CBP

EOB

B0 B1 B5

GN GQ MB MB

TR Ptype GOB GOB GOB...

...

...

...

H.261 picture frame

Fig. 12.8 Schematic illustration of H.261 video file (bitstream)

12.4.3 MPEG Standard

The Moving Pictures Experts Group (MPEG), established in 1988, recommended a series

of compression standards for digital audio and video data. Their first proposal, approved

by the International Organization for Standardization (ISO) in 1991, is called the MPEG-1.

This was followed by subsequent standards, which are improvements of the MPEG-1. These

include MPEG-2, MPEG-4, and MPEG-7. In this section, we shall discuss MPEG-1 to learn

about the basics of the MPEG standards.

The MPEG-1, also referred to as ISO/IEC 11172, was proposed for coding of moving

pictures and associated audio for digital storage media at up to about 1.5 Mbits/s. Out of the

specified 1.5 Mbits/s, 1.2 MBits is intended for coded video and 256 kbps can be used for

coded stereo audio data. The standard has five parts.

1. Systems (11172-1): This part takes care of dividing outputs into packets of bitstreams,

multiplexing, and synchronization of video and audio streams.

2. Video (11172-2): The part is concerned with video compression standard.

3. Audio (11172-3): This part deals with the audio compression standard.

4. Conformance (11172-4): It specifies the design of tests to verify if the bitstream or

decoder conforms to (complies with) the standard.

5. Software (11172-5): A complete software implementation of the MPEG-1 standard

decoder and a sample software implementation of the encoder are also included as part

of the standard.

The video encoding standard in MPEG-1 is based on motion compensation, as in H.261.

Recall that in H.261, forward prediction is used for motion estimation. In forward prediction,
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DCT

Quantization

Entropy

coding

Compressed

data

Difference

macroblockTarget frame

Macroblock

Matching

macroblock

Previous

reference

frame

Motion 

vector

For each 8 × 8

block

Previous

reference

frame

Matching

macroblock

Y

Cb

Cr

−

%

Fig. 12.9 The B-frame coding in MPEG-1. The averaging of two macroblocks is denoted

by ‘%’.

each macroblock in the target P-frame is assigned the best matching macroblock from the

previously coded I- or P-frame. However, it is possible that the target macroblock may not

have any matching entity in the previous frame, due to unexpected movements and occlu-

sions in a real scene. In such cases, we can get a match in the next frame. This is known as

backward prediction. MPEG-1 supports both forward and backward prediction for motion

estimation.

For the bidirectional (forward and backward) motion compensation, a third frame type -

B-frame - is introduced in MPEG-1, in addition to the I- and P-frames. The idea is illustrated

in Fig. 12.9. Each macroblock in a B-frame specifies up to two motion vectors - one from

the forward prediction and one from the backward prediction. If matching in both directions

(forward and backward) is successful, both the motion vectors are sent. The two corre-

sponding matching macroblocks are averaged before comparing to the target macroblock

for generting the prediction error. If an acceptable match is found in only one of the refer-

ence frames, only one motion vector and its corresponding macroblock are used from either

the forward or backward prediction.

A typical frame sequence of an MPEG video is illustrated in Fig. 12.10. The actual frame

pattern is determined at encoding time and is specified in the frames’ header. In MPEG

specification, M is used to denote the interval between a P-frame and its preceding I- or

P-frame. The number of B-frames in this interval is M-1. The interval between two con-

secutive I-frames is denoted by N . In Fig. 12.10, M = 3 and N = 9. Note that due to the

use of backward prediction, MPEG encoder or decoder cannot work for any B-frame mac-

roblock without its succeeding P- or I-frame. Thus, coding order of the frame is different

from the display order, as illustrated in Fig. 12.10. Clearly, buffering or temoprary storage is

an important issue in MPEG display.
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Coding and

transmission

order Viewing order

I

I

B B

B B
B B

B B

P

P

P

B B P B B I

I

Fig. 12.10 A typical MPEG-1 frame sequence for display and coding

Table 12.2 MPEG-1 constrained parameter set

Parameter Value

Horizontal size of picture ≤ 768

Vertical size of picture ≤ 576

Number of macroblocks/picture ≤ 396

Number of macroblocks/second ≤ 9, 900

Frame rate ≤ 30 fps

Bitrate ≤ 1, 856 kbps

In addition to the bidirectional prediction, there are a few more major differences between

MPEG-1 video coding standard and the H.261. While H.261 supports only CIF (352× 288)

and QCIF (176 × 144) source formats, MPEG-1 supports various formats including SIF,

provided a constrained parameter set shown in Table 12.2 is satisfied.

The MPEG-1 picture is also divided into one or more slices rather than GOBs as in H.261.

Slices are more flexible and can contain a variable number of macroblocks. Quantization

for intra (I)-coding is done using a quantization table (Table 12.3), unlike in H.261. The

step_size in such case becomes Q[i, j] × scale where Q[i, j] is the corresponding table entry

and scale is an integer in the range [1, 31]. For inter (P)-coding, the step_size for quantization

is 16 × scale.

The organization of MPEG-1 video file (bitsream) is shown in Fig. 12.11. It consists of

six layers. The sequence layer at the top of the hierarchy consists of one or more groups

of pictures (GOPs). The header contains picture information such as horizontal and verti-

cal size, aspect ratio, frame rate, bit rate, quantization matrix, and so on. There can be an

optional sequence header between GOPs to indicate parameter change. Each GOP (GOP

layer) contains one or more pictures, one of which must be an I-picture. The GOP header

contains information such as the hour-minute-second frame from the start of sequence. In the
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Table 12.3 Standard quantization table for

intra-coding in MPEG-1

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

Sequence layer

GOP layer

Picture layer

Slice layer

Macroblock layer

Block layer

Header

Header

Header

Header

Header B0

DC EOBVLC run VLC run

B1 B5

MB MB MB

Slice Slice Slice

Picture Picture Picture

GOP GOP GOP Seq end code…

…

…

…

…

…

Video sequence

Fig. 12.11 Schematic of the MPEG video file (bitstream) organization

picture layer, the picture-level information is stored. MPEG-1 contains four picture types—

there are the three common types; I-picture (intra-coding), P-picture (predictive coding), and

B-picture (bidirectional predictive coding). In addtion, MPEG-1 also has a D-picture (DC-

coded), in which only the DC coefficients are retained. Below the picture layer is the slice

layer. In this layer, information such as the length (number of macroblocks) and position of

slices are provided. Each macroblock in the macroblock layer consists of four Y blocks, one

Cb block, and one Cr block (total six blocks). All blocks are of the size 8 × 8. If the blocks

are intra-coded, the differential DC coefficient (DPCM of DCs, as in JPEG) is stored first,

followed by variable-length codes (VLC) for the AC coefficients. Otherwise, DC and AC

coefficients are both coded using VLCs.
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SUMMARY

In this chapter, we introduced an important application area of computer graphics, namely

the multimedia. As we saw, multimedia is a vast field. Broadly, there are four aspects in mul-

timedia system design—multimedia content creation (with authoring tools), multimedia data

representation (data compression techniques and standards), search and retrieval (involves

data base management issues, file system design, and content-based retrieval), and transmis-

sion and delivery (all network-related issues including protocol, streaming server design, and

QoS). Among them, we mainly discussed the first two (authoring and representation) in this

chapter.

Multimedia refers to content made from different media such as text, image,audio, video,and

animation put together. A closely related concept is hypermedia—multimedia content that can

be accessed non-linearly. The most popular examples of hypermedia are the web pages. Web

pages contain links that allow us to jump to different places/pages. In order to transfer hyper-

media content over the Internet, the HTTP protocol is used. Also, markup languages such as

HTML and XML are primarily used to create and publish hypermedia contents on the web.

Authoring of multimedia content is not an easy task. It typically involves a team of experts

from different disciplines. The production cycle starts with storyboarding, followed by functional

specification, prototyping, and testing. In order to design a production and implement various

stages of the production cycle,multimedia authoring tools are used.The range of functionalities

of these tools is wide—from simple video production facility to complete production environment.

Authoring approaches for multimedia contents follows some metaphors.These include scripting

language, slide show, hierarchy, flow-control, frames, card, and cast/score/scripting metaphors.

Among the various types of media, we already discussed about the basic representation

techniques of texts, images, and animation in the previous chapters. In this chapter, we intro-

duced the fundamentals of digital audio and video. Both these media are assumed to be

represented using signals, although their nature are different. Ideas from signal processing

domains are borrowed to represent and manipulate audio and video signals.

An important issue in multimedia is to have efficient representation of data, such that the

storage, transmission, and manipulation become efficient. Typically, multimedia data is stored

in compressed form. We briefly discussed about the fundamentals of data compression. There

are two stages in any data compression method: compression or encoding and decompres-

sion or decoding. Two types of data compressions are possible. In lossless compression (e.g.,

entropy coding), no data element is lost during encoding. Thus, we can regenerate the exact

original. In lossy compression (e.g., DCT coding), some data is lost during compression. Hence,

we can generate only an approximation of the original. Using data compression techniques,

many compression standards are designed and used in multimedia. We discussed three of

those:one image (JPEG) and two video (H.261 and MPEG-1) data compression standards.We

saw that all these standards are a combination of lossy and lossless compression techniques.

For general introduction to the various topics of multimedia, see Li and Drew [2004]. Hyper-

media concepts are introduced in Nielsen [1995]. Digital video fundamentals are discussed in

Birn [2000], Poynton [1996], and Tekalp [1995]. More on digital audio basics can be found in

Pohlmann [2000].Nielsen [1995] is a standard book on data compression.Also refer to Sayood

[2000] for further reading on data compression.See also Gonzalez and Woods [2002] for more

on mathematical transforms and image procesing and Stark and Woods [2001] for stochastic

processes,which are required to understand data compression techniques.For details on JPEG

BIBLIOGRAPHIC NOTE
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and JPEG2000 standards, refer to Pennebaker and Mitchell [1993] and Taubman and Marcellin

[2002], respectively. For various image and video compression standards, refer to Bhaskaran

and Konstantinides [1997].

KEY TERMS

B-frame – a special frame type used in MPEG

Backward prediction – prediction of motion path from next frames

Code/Codeword – a term used to refer to encoder outputs

Component video – video data comprising red, green, and blue components

Composite video – video data having a single wave combining luminance and chrominance

values

Compression – a technique to reduce the number of bits required to represent data items

Compression ratio – the ratio representing the gain through compression

Decoder – a system to decompress and get back the data

Encoder – a system to convert original data to compressed form

Forward prediction – prediction of motion path from previous frames

Frequency modulation (FM) – a signal reconstruction technique

H.261 – a digital video data compression standard

HTML – hypertext markup language, used to publish hypermedia content on the web

HTTP – the hypertext transfer protocol used to transfer hypertexts over a network

Hypermedia – non-liner representation of multimedia content.

Hypertext – non-linear representation of text

I-frames – frames that are considered to be independent images in a video frame sequence

JPEG – a digital image compression standard

Lossless compression – compression techniques that do not lose any information during

compression

Lossy compression – compression techniques in which some original information is lost

Metaphor – abstraction of real world process/methods

Motion compensation – video compression technique that tries to predict object motion path

between frames

MPEG – a multimedia data compression standard

Multimedia – multiple contents or media combined together; also refers to systems that deal with

multimedia content

Multimedia authoring/multimedia production – creation of multimedia contents

Nyquist rate – a special sampling frequency for signal reconstruction

P-frames – frames that are obtained through prediction preceding or next P-/I-frames

Predictive coding – the coding technique that makes use of prediction based on previ-

ous/subsequent decoded data and the error between real and predicted data

S-video – video data comprising luminance and composite chromatic values

Sampling – measuring signal amplitude values at specific time intervals

Sampling frequency – the rate (number of samples per unit time) of sampling

Transform coding – samples are transformed to a new basis space and then encoded with a

lossless compression

Wave table synthesis (or wave method) – a signal reconstruction technique

World Wide Web (WWW) – the most popular hypermedia, which we often refer to as the Internet

XML – extensible markup language, an improved form of HTML

YCbCr – a color model used for video data representation

YIQ – a color model used in JPEG

YUV – a color model used in JPEG
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EXERCISES

12.1 What is meant by the term ‘multimedia’? How is computer graphics related to it?

12.2 Discuss the broad issues in multimedia.

12.3 Explain the term hypermedia. What differentiates it from multimedia?

12.4 Discuss the stages of a typical multimedia production cycle.

12.5 Explain the idea of authoring metaphor. Discuss any three metaphors used for multimedia

content creation.

12.6 Write a short note on the relation between signal processing and handling of multimedia

audio and video contents.

12.7 What is Nyquist rate? Why do we need to know it?

12.8 Discuss the main stages of JPEG compression, with illustrative diagrams. How is a JPEG

file structured?

12.9 What are the main steps involved in H.261 video coding? Describe the format of a H.261

compliant video file.

12.10 Discuss the main differences of MPEG-1 video standard from H.261, with illustrative

diagrams. How is the MPEG-1 video file structured?
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APPENDIX

A Mathematical

Background

Various mathematical concepts are involved in understanding the theories and principles

of computer graphics. They include the idea of vectors and vector algebra, matrices and

matrix algebra, tensors, complex numbers and quaternions, parametric and non-parametric

representations and manipulations of curves, differential calculus, numerical methods, and

so on. In order to explain the fundamental concepts of graphics in this book, we used some

of those. The mathematics used in this book mostly involved vectors and matrices and how

those are manipulated. In addition, we also used concepts such as reference frames and line

equations for calculating intersection points between two lines. The backgrounds for these

mathematical concepts are discussed in this appendix.

A.1 COORDINATE REFERENCE FRAMES

In the discussion on the pipeline stages, we mentioned about different (coordinate) reference

frames. We primarily used the concepts of the Cartesian reference frames in our discussion.

The Cartesian frames are characterized by the mutually perpendicular (orthogonal) axes,

which are straight lines. Both 2D and 3D Cartesian frames are used to represent points at

the different stages of the graphics pipeline.

Usually, the device-independent commands within a graphics package assume that a

screen region represents the first quadrant of a 2D Cartesian reference frame in standard

position (see Fig. A.1(a)), The lower-left corner of the screen is the coordinate origin. How-

ever, scan lines are numbered from top to bottom with the topmost scan line numbered 0.

This means that the screen positions are represented internally assuming the upper-left cor-

ner of the screen to be the origin and the positive Y -axis points downwards, as shown in

Fig. A.1(b). In other words, we make use of an inverted Cartesian frame. Note that the hori-

zontal (X ) coordinate values in both the systems are the same. The relationship between the

vertical (Y ) values of the two systems are shown in Eq. A.1, where y is the Y -coordinate

value in the standard frame and yinv is the Y-coordinate value in the inverted frame.

y = ymax − yinv (A.1)

In order to represent points in the three-dimensional space, usually the right-handed

Cartesian frame is used (Fig. A.2). We can imagine the system as if we are trying to grasp

the Z-axis with our right hand in a way such that the thumb points towards the positive
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Y

Ymax

Origin (0, 0)

(a) (b)

X

Y

Ymax

Origin (0, 0)

X

Fig. A.1 Standard and inverted 2D Cartesian reference frames used in computer graphics

(a) Points are represented with respect to the origin in the lower-left corner (b) Points are

represented with respect to the origin at the upper-left corner

+X axis

+Y axis

+Z axis

Fig. A.2 Right-handed 3D Cartesian coordinate system

Z direction. Hence the fingers are curling from the positive X direction to the positive

Y direction (through 90◦).

When a view of a 3D scene is displayed on a 2D screen, the 3D point for each 2D screen

position is sometimes represented with the left-handed reference frame shown in Fig. A.3.

Unlike the right-handed system, here we assume to grasp the Z axis with our left hand. Other

things remain the same. That is, the left-hand thumb points towards the positive Z direc-

tion and the left-hand fingers curl from the positive X direction to the positive Y direction.

+X axis

+Y axis

+Z axis

View plane

Fig. A.3 Left-handed 3D Cartesian coordinate system
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The XY plane represents the screen. Positive Z values indicate positions behind the screen.

Thus, the larger positive Z values indicate points further from the viewer.

A.2 VECTORS AND VECTOR OPERATIONS

A vector is a mathematical entity with two fundamental properties—magnitude and direc-

tion. In a chosen coordinate reference frame, we can use two points to define a vector. For

example, consider Fig. A.4. It shows a vector in two dimensions in terms of the two points P1

and P2. Let us denote the coordinates of the two points as (x1, y1) and (x2, y2), respectively.

Then, we can define the vector EV as,

EV = P2 − P1

= (x2 − x1, y2 − y1)

= (Vx, Vy)

The quantities Vx and Vy are the projections of the vector V onto the X - and Y -axis,

respectively. They are called the Cartesian components (or Cartesian elements). The mag-

nitude (denoted by | EV |) of the vector is computed in terms of these two components

as,

| EV | =

√

V 2
x + V 2

y

The direction can be specified in terms of the angular displacement α from the horizontal

as,

α = tan−1

(

Vx

Vy

)

The idea of a 3D vector is similar. Suppose we have two points P1(x1, y1, z1) and

P2(x2, y2, z2). We now have three Cartesian components instead of two for the three axes:

Vx = (x2 − x1), Vy = (y2 − y1), and Vz = (z2 − z1) for the X−, Y− and Z axis, respectively.

Then, the magnitude of the vector can be computed as,

| EV | =

√

V 2
x + V 2

y + V 2
z

The vector direction can be given in terms of the direction angles, that is, the angles α, β,

and γ the vector makes with each of the three axes (see Fig. A.5). More precisely, direction

X

V

Y

P2(x2, y2)

P1(x1, y1)

Fig. A.4 A 2D vector V defined in a Cartesian frame as the difference of two points
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+Y axis

a

b

g

+Z axis

+X axis

V

Fig. A.5 Three direction angles for a 3D vector

angles are the positive angles the vector makes with each of the positive coordinate axes.

The three direction angles can be computed as,

cos α =
Vx

|V |

cos β =
Vy

|V |

cos γ =
Vz

|V |

The values cosα, cosβ, and cosγ are known as the direction cosines of the vector. In fact,

we need to specify any two of the three cosines to find the direction of the vector. The third

cosine can be determined from the two since,

cos2
α + cos2

β + cos2
γ = 1

In many situations, we deal with unit vectors. It is a vector with magnitude 1. While we

usually denote a vector with an arrow on top, such as EV , a unit vector is denoted by putting

a hat on top of the vector symbol, such as V̂ . However, the most common notation for unit

vector is û. Calculation of the unit vector along the direction of a vector is easy. Suppose
EV = (Vx, Vy, Vz) be the given vector. Then the unit vector V̂ along the direction of EV is

given by Eq. (A.2).

V̂ =

(

Vx

|V |
,

Vy

|V |
,

Vz

|V |

)

(A.2)

where |V | =

√

V 2
x + V 2

y + V 2
z is the magnitude of the vector.

A.2.1 Vector Addition and Scalar Multiplication

The addition of two vectors is defined as the addition of corresponding components. Thus,

we can represent vector addition as follows.

EV1 + EV2 = (V1x + V2x, V1y + V2y, V1z + V2z)
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V1 + V2

+Y axis +Y axis

+X axis +X axis

V1

V1

V2

V2

(a) (b)

Fig. A.6 Illustration of vector addition (a) Original vectors. (b) EV2 repositioned to start where

EV1 ends

The direction and magnitude of the new vector is determined from its components as

before. The idea is illustrated in Fig. A.6 for 2D vector addition. Note that the second vector

starts at the tip of the first vector. The resulting vector starts at the start of the first vector and

ends at the tip of the second vector.

Addition of a vector with a scalar quantity is not defined, since a scalar quantity has only

magnitude without any direction. However, we can multiply a vector with a scalar value. We

do this by simply multiplying the scalar value to each of the components as follows:

sEV = (sVx, sVy, sVz)

A.2.2 Multiplication of Two Vectors

We can multiply two vectors in two different ways—scalar or dot product and vector or

cross product. In the case of a dot product of two vectors, we obtain a scalar value, whereas

we get a vector from the cross product of two vectors.

The dot product of two vectors EV1 and EV2 is calculated as,

EV1. EV2 = | EV1|| EV2| cos θ 0 ≥ θ ≥ π

where θ is the smaller of the two angles between the vector directions. We can also determine

the vector dot product in terms of their Cartesian components as,

EV1. EV2 = V1xV2x + V1yV2y + V1zV2z

Note that the dot product of a vector with itself produces the square of the vector magni-

tude. There are two important properties satisfied by the dot product. They are commutative.

In other words, EV1. EV2 = EV2. EV1. Also, dot products are distributive with respect to vector

addition. Thus, EV1.( EV2 + EV3) = EV1. EV2 + EV1. EV3.

The cross product of two vectors is defined as,

EV1 × EV2 = û| EV1|| EV2| sin θ 0 ≥ θ ≥ π

In this expression, û is a unit vector (magnitude 1), which is perpendicular to both EV1 and
EV2 (Fig. A.7). The direction for û is determined by the right-hand rule: we grasp with our
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V1 ×  V2

q

V1
u

V2

Fig. A.7 Illustration of the cross product of two vectors

right hand an axis that is perpendicular to the plane containing EV1 and EV2 such that the fingers

curl from EV1 to EV2. Thus, the right thumb denotes the direction of û. The cross product can

also be expressed in terms of the Cartesian components of the constituent vectors as,

EV1 × EV2 = (V1yV2z − V1zV2y, V1zV2x − V1xV2z, V1xV2y − V1yV2x)

The cross product of two parallel vectors is zero. Therefore, the cross product of a vec-

tor with itself is zero. It is also not commutative since EV1 × EV2 = −( EV2 × EV1). However,

cross product of two vectors is distributive with respect to vector addition similar to the dot

product, that is, EV1 × ( EV2 + EV3) = EV1 × EV2 + EV1 × EV3.

A.3 MATRICES ANDMATRIX OPERATIONS

A matrix is a rectangular array of elements, which can be numerical values, expressions, or

even functions. We have already encountered several examples of matrices in the book. In

general, we can represent a matrix M with r rows and c columns as,

M =











m11 m12 . . . m1c

m21 m22 . . . m2c

.

.

.

.

.

.

.

.

.

mr1 mr2 . . . mrc











where mij represents the elements of M. As per the convention, the first subscript of any

element denotes the row number and the column number is given by the second subscript.

A matrix with a single row or single column represents a vector (the elements represent

the coordinate components of the vector). When a vector is represented as a single-row

matrix, it is called a row vector. A single column matrix is called a column vector. Thus, a

matrix can also be considered as a collection of row or column vectors.

A.3.1 Scaler Multiplication andMatrix Addition

In order to multiply a matrix M with a scalar value s, we multiply each element mij with s.

For example, if

M =





3 2 1

2 1 3

1 3 2




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then

2M =





6 4 2

4 2 6

2 6 4





Two matrices can be added only if they both have the same number of rows and columns.

In order to add two matrices, we simply add their corresponding elements. Thus,





3 2 1

2 1 3

1 3 2



 +





6 4 2

4 2 6

2 6 4



 =





9 6 3

6 3 9

3 9 6





A.3.2 Matrix Multiplication

Given two matrices A (dimension m × n) and B (dimension p × q), we can multiply them

if and only if n = p. In other words, the number of columns in A should be the same as the

number of rows in B. The resultant matrix C = AB will have the dimension m × q. We can

obtain the elements of C (cij) from the elements of A (aij) and B (bij) as,

cij =

n
∑

k=1

aikbkj

In the following example, we multiplied a 2 × 3 matrix with a 3 × 2 matrix to obtain the

2 × 2 matrix.

[

3 2 1

1 3 2

]





6 4

4 2

2 6



 =

[

28 22

22 22

]

Note that matrix multiplication is not commutative: AB 6= BA. However, it is distributive

with respect to matrix addition. That is, A(B + C) = AB + AC.

A.3.3 Matrix Transpose

Given a matrix M, its transpose MT is obtained by interchanging rows and columns. For

example,

[

3 2 1

1 3 2

]T

=





3 1

2 3

1 2





We can also define transpose of a matrix product as,

(M1M2)T
= MT

2 MT
1



i

i

“App-A” — 2015/9/15 — 9:51 — page 258 — #8
i

i

i

i

i

i

258 Computer Graphics

A.3.4 Determinant of a Matrix

A useful concept in operations involving matrices is the determinant of a matrix. Determi-

nant is defined only for square matrices (i.e., those matrices having the same number of rows

and columns). The second-order determinant for a 2 × 2 square matrix M is defined as,

det M =

[

m11 m12

m21 m22

]

= m11m22 − m12m21

Higher-order determinants are obtained recursively from the lower-order determinant val-

ues. In order to calculate a determinant of order 2 or greater of an n× n matrix M, we select

any column k and compute the determinant as,

det M =

n
∑

j=1

(−1)j+kmjkdet Mjk

where det Mjk is the (n − 1) by (n − 1) determinant of the submatrix obtained from M after

removing the jth row and kth column. Alternatively, we can select any row j and calculate

the determinant as,

det M =

n
∑

j=1

(−1)j+kmjkdet Mjk

Efficient numerical methods exist to compute determinants for large matrices (n > 4).

A.3.5 Matrix Inverse

Another useful matrix operation is the inverse of a matrix. This is again defined for only

square matrices. Moreover, a square matrix can have an inverse if and only if the determinant

of that matrix is non-zero. If an inverse exists, we call the matrix non-singular. Otherwise, it

is a singular matrix.

For an n × n matrix M, its inverse is usually denoted by M−1. The matrix and its inverse

also satisfy the relation,

MM−1
= M−1M = I

where I is the identity matrix. Only the diagonal elements of I are 1 and all other elements

are zero.

We can calculate the elements of M−1 from the elements of M as,

m−1
jk =

(−1)j+kdet Mkj

det M

where m−1
jk is the element of the jth row, kth column of the inverse matrix. Mkj is the (n− 1)

by (n − 1) submtarix obtained by deleting the kth row, jth column of M. Usually, more

efficient numerical methods are employed to compute the inverse of large matrices.
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A.4 LINE EQUATION AND INTERSECTION CALCULATION

In clipping algorithms (Chapter 7), we saw the need for determining line-boundary intersec-

tion points. How do we do that? Suppose we are given a line segment specified by two end

points P (x1, y1) and Q (x2, y2). We can use the point-slope form (Eq. A.3) to derive the line

equation.

y − y1 = m(x − x1) (A.3)

In Eq. A.3, m is the slope (or gradient) of the line, it indicates how steep the line is. We

can derive m in terms of the two end points as in Eq. A.4.

m =
y2 − y1

x2 − x1
(A.4)

For example, suppose P (2,3) and Q (4,5). Then m =
5−3
4−2

= 1. Therefore, we can have

the line equation as: y − 3 = 1(x − 2).

Another way to represent a line is the slope-intercept form: y = mx + c. In the equation,

c is known as the intercept (of the line with the Y -axis). We can recast the point-slope form

to the standard form by rearranging the terms in Eq. A.3, as follows:

y = y1 + mx − mx1 = mx + (y1 − mx1) = mx + c

Let us illustrate this with the previous example. We have the point-slope form y − 3 =

1(x−2). After expnading, we get y−3 = x−2. We rearrange the terms to get y = x−2+3

or y = x + 1. This is the standard form.

Now suppose we are given two line segments: L1 (y = m1x + c1) and L2 (y = m2x + c2).

If the lines intersect, there must be a common point (x, y), which lies on both the lines.

Therefore, the following relation must hold.

m1x + c1 = m2x + c2

From this, we derive the common x-coordinate as,

x =
c2 − c1

m1 − m2

We can substitute this value of x in any of the line equations to get the common

y-coordinate as,

y = m1
c2 − c1

m1 − m2
+ c1 using L1 or

y = m2
c2 − c1

m1 − m2
+ c2 using L2

When we are considering a vertical line, the line equation is given as x = b where b

is some constant. Now, suppose we are trying to calculate the intersection point of a line

y = mx + c with a vertical line x = b. We substitute b for x in the line equation to get the
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y-coordinate as y = mb + c. Thus, the intersection point is (b, mb + c). In the case of a

horizontal line, we have its equation as y = b, where b is a constant. We substitute this value

for y in the line equation to compute the x-coordinate as: b = mx+ c or x =
b−c

m
. Hence, the

intersection point is ( b−c
m

, b).

A.5 PLANE EQUATION AND PLANE NORMAL

At many places of the 3D graphics pipeline (such as lighting and hidden surface removal),

we have to deal with 3D surfaces and surface normals. The implicit form of a surface in

general is given by Eq. A.5.

f (x, y, z) = 0 (A.5)

For any point P(x, y, z) on the surface, Eq. A.5 should evaluate to zero, that is, f (p) = 0.

For points that are not on the surface, Eq. A.5 returns some non-zero value. However, for

the purpose of this book, we shall restrict ourselves to the discussion of plane surfaces only,

rather than any arbitrary curved surface. This is so since we mostly considered objects with

polygonal surfaces. We also know that any surface can be represented as a mesh of polygonal

surfaces.

The most familiar way to represent a planar surface if the point-normal form, shown in

Eq. A.6.

Ax + By + Cz + D = 0 (A.6)

Equation A.6 is also known as the general form of a plane equation. Let En be the normal

to the plane, that is, a vector perpendicular to the planar surface. Then, the constants A, B,

and C in the plane equation (Eq. A.6) denote the corresponding Cartesian components En. In

other words, En = (a, b, c).

Sometimes, we want to derive a plane equation given three points on the plane (say a, b,

and c). Each of these points can be represented as a point vector, that is, a vector from the

origin to the point. Thus, we can form three point vectors Ea, Eb, and Ec. From the three point

vectors, we can derive two vectors that lie on the plane. For example, the vectors (Eb−Ea) and

(Ec − Ea) are two vectors on the plane.

Since the two vectors are on the plane, we can take their cross-product to obtain a vector

that is perpendicular to the two vectors, that is, the plane itself. Since the vector is perpen-

dicular to the plane, it is the normal vector. Thus, En = (Eb − Ea) × (Ec − Ea). Once we know En,

we have the three constants A, B, and C. We then use Eq. A.6 by putting any one of the three

points in the equation to obtain the value of D.

Let us illustrate the idea with an example. Suppose we are given the three points a(1, 1, 1),

b(3, 4, 5), and c(7, 7, 7). Therefore, the three point vectors are,

Ea = (1, 1, 1)

Eb = (3, 4, 5)

Ec = (7, 7, 7)
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From these three point vectors, we form two vectors that lie on the plane, as follows.

Eb − Ea = (3, 4, 5) − (1, 1, 1) = (2, 3, 4)

Ec − Ea = (7, 7, 7) − (1, 1, 1) = (6, 6, 6)

The cross-product of these two vectors yield (see Section A.2 for details),

(Eb − Ea) × (Ec − Ea) = (2, 3, 4) × (6, 6, 6) = (−6, 12,−6)

Therefore, the normal to the plane is En = (−6, 12,−6). Thus, the three plane constants

are A = −6, B = 12, C = −6. Replacing these values in Eq. A.6, we get,

−6x + 12y − 6z + D = 0

Now let us take any one of the three points, say b(3, 4, 5). Since the point is on the plane,

we should have

−6.3 + 12.4 − 6.5 + D = 0

From this equation, we get D = 0

Hence, the plane equation is −6x + 12y − 6z = 0 or −x + 2y − z = 0.
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B Fractals

In computer graphics, many a times we need to generate shapes that occur in nature. For

example, mountains, trees, tree leaves, shorelines and so on. Of course, we can use sim-

ple primitives such as lines or triangles to approximate these shapes. For instance, simple

triangles may be used to generate a mountain. However, such crude approximations affect

the quality of the image. In fact, we can do much better, by applying a more sophisticated

modelling technique for such shapes. The technique is known as the fractal method, which

is a procedural technique. In a procedural technique, we do not use equations to represent

objects unlike in techniques such as boundary representation (Chapter 2). Instead, we use

a procedure following a particular set of rules. As the name suggests, the fractal method is

based on the notion of fractal objects or simply fractals. Let us first try to understand the

concept of a fractal.

B.1 CONCEPT OF DIMENSION AND FRACTAL

There are two defining characteristics of a fractal:

1. There are infinite details at every point on the object.

2. There is a certain self-similarity between object parts and the overall object features.

The first point means that the closer you look at a fractal, you will get to see more and

more details. The second implies that the details will look similar to the original. However,

the self-similarity property is not unique to the fractals. Many other non-fractal objects also

exhibit the same. For example, consider a straight line segment with length l. Enlarge the

line segment by a scaling factor k = 2. You get a new line segment of length 2l, which is

the same as having two line segments of length l. In other words, when we use a scaling

factor 2 on a line segment, we get two line segments having the same length as that of the

original. They are also similar to the original shape. Thus, we can say that, as a result of the

enlargement, we get an object having two subparts, each of which is similar to the original

(Fig. B.1). Clearly, this is an example of an object, which, when looked at closely, reveals

subparts that are similar to the original. Let us denote by N , the number of subparts we get,

that are similar to the original.

Let us consider another example, a square. We enlarge all its sides by a factor of two (i.e.,

k = 2). We get four new squares, each of which is similar to the original (Fig. B.2). Thus, in

this case we have N = 4. In a likewise manner, we can show that for a cube, we get N = 8

for k = 2 (Fig. B.3).
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2l

(b)(a)

I I I

Fig. B.1 Example of line self-similarity (a) Original line (b) Enlarged line (k = 2)

Note that the enlarged line consists of two self-similar line segments

(b)(a)

Fig. B.2 Example of square self-similarity (a) Original square (b) Enlarged square (k = 2)

(a) (b)

Fig. B.3 Example of cube self-similarity (a) Original cube (b) Enlarged cube (k = 2)

Thus, all these well-known objects satisfy the self-similarity property. But we know for

sure that they are not fractals. Clearly, we require some other property to distinguish between

fractals and non-fractals. This is provided by the notion of dimension. We all are familiar

with the term and have some understanding of what it means. However, we require a more

formal definition of it.

Consider the aforementioned case of the square. We saw that N = 4 when k = 2 for the

square. We can therefore relate the two as follows.

k2
= N (B.1)

In other words,

logk N = 2 (B.2)

The term logk N is defined as the dimension. Therefore, we can define the following.

1. For a line, the dimension is = log2 2 = 1.

2. For a square, the dimension is = log2 4 = 2.

3. For a cube, the dimension is = log2 8 = 3.
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Fig. B.4 The Koch snowflake, made up of six sides. One of the sides is shown inside the

circle.

Note that for all these objects, we have integer dimensions. A fractal, on the other

hand, has fractional dimension (hence the name). Let us consider an example fractal for

illustration: the Koch snowflake. The object is shown in Fig. B.4. As the name sug-

gests, it can be used to model snowflakes in a computer-generated scene. So, how can we

generate it?

As Fig. B.4 shows, the fractal is made up of six sides. One of the sides is shown in the

figure as an example. Each of these six sides is a fractal in itself, known as the Koch curve.

So, if we can generate the Koch curves and put six of them together as in Fig. B.4, we will

get the snowflake. How can we generate the Koch curve?

We can actually write an iterative procedure to generate a Koch curve. The procedure

starts with an initial shape (called an initiator). The initiator for a Koch curve is simply a

straight line (Fig. B.5a), having unit length. After the first iteration, the initiator is trans-

formed to the hat shape shown in Fig. B.5(b). The shape is obtained with the following two

steps.

1. Put an eqilateral triangle whose base is the middle one-third of the line.

2. Remove the triangle base.

Clearly, the object we get after the first iteration has a length = 4 ×
1
3

=
4
3
. In the

second iteration, we perform the same operation on each of the four line segments of

the hat. Thus, we get the shape shown in Fig. B.5(c). So, what is the length of the new

shape?

Each line segment of the hat shape after the first iteration has a length of 1
3
. In the second

iteration, each of these line segments is replaced with the same hat shape. Thus, each line

segment of the hats, after the second iteration, has length =

1
3
3
=

1
9
. There are 16 such line

segments in the overall shape (comprising four hats). Therefore, total length of the object is

= 16 ×
1
9
=

16
9
= ( 4

3
)2.
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P0 P1

Pc

Pb

Pa

60°

(a)

(c)

(d)

(b)

Fig. B.5 The first three iterations for the generating the Koch curve

In the third iteration, we again replace each of the 16 line segments with a new

hat shape to get the overall shape shown in Fig. B.5(d). Using a similar argument

as before, we can show that the length of this new object is = ( 4
3
)3. In gen-

eral, after the nth iteration, we get an object with length n. Thus, if we go for a

very large number of iterations (∞), the length of the object will also be very large

(= ( 4
3
)∞ = ∞).

As you can see, the length of the Koch curve is actually very very large (∞). When we put

six of them together to create the Koch snowflake (Fig. B.4), the perimeter of the snowflake

is also very very large. However, the area it bounds is finite. Now, let us try to understand

why the Koch curve is a fractal.

Consider Fig. B.5(d) again. It shows the curve after three iterations. Note that the curve

after the third iteration consists of four components, each of which is similar to the original.

In other words, we can say that there are four sub-parts that are similar to the original, if we

enlarge it by a factor of three (i.e., N = 4 when k = 3). Therefore, the dimention of a Koch

curve is,

log3 4 = 1.261 (B.3)



i

i

“App-B” — 2015/9/15 — 9:53 — page 266 — #5
i

i

i

i

i

i

266 Computer Graphics

For a Koch curve, the dimension is fractional. Hence, it is a fractal. In general, it is not

very easy to determine fractal dimensions. Sophisticated methods are used for the purpose.

We will not discuss those here as they are out of scope of this book. However, interested

readers may refer to the references mentioned at the end of Chapter 2 (Bibliographic Note)

for more information.

Depending on the dimension value, we can categorize fractals into the following classes:

Planar fractal curve If a fractal lies completely within a two-dimensional plane, it has

dimension D > 1. The closer D is to 1, the smoother the fractal curve is. When D = 2, we

get a Peano curve, which completely fills a finite region of 2D space. Sometimes, we can

have a fractal lying in a 2D plane with 2 < D < 3. In such cases, the curve self-intersects.

Planar fractal curves are good for modelling natural boundaries such as shorelines.

Fractal surface For a fractal surface, we have (typically) 2 < D ≤ 3. If D = 3, the surface

fills a volume of space. We get overlapping coverage of the volume enclosed by the surface

if D > 3. We can use fractal surfaces to model objects such as terrain, clouds, and water.

Fractal solid The fractal solids usually have 3 < D ≤ 4. If D > 4, we have self-

overlapping objects. With fractal solids, we can model sophisticated object properties such

as water vapor density or temperature within a cloud.

B.2 GENERATION OF FRACTALS

As we mentioned at the begining of this chapter, fractals are generated through some iter-

ative procedures. What these procedures do in general is to repeatedly apply a specified

transformation function (F()) to points within a region of space. So, if P0 = (x0, y0, z0) is

a selected initial position, each iteration of the procedure applies F to generate successive

levels of detail as follows:

P1 = F(P0), P2 = F(P1), P3 = F(P2), . . .

The way this general idea is implemented depends on the type of fractal we are dealing

with. Broadly, there are the following three types.

Self-similar fractals When we zoom-in on a fractal, subparts become visible (e.g., the koch

snowflake discussed in the preceding section). If these subparts are scaled-down version of

the original (as in the Koch curve), with the scaling factor same along all directions (x, y, z),

the fractal is called self-similar. These fractals are good for modelling objects such as trees,

tree leaves, shrubs, etc.

Self-affine fractals If the fractal subparts are scaled-down versions of the original and

the scaling factor is different in each coordinate (x, y, or z) direction, the fractal is called

self-affine. These are useful to model terrain, water, and clouds.

Invariant fractal sets These are fractal objects formed with non-linear transformations

(e.g., self-squaring, self-inverse). Examples of such fractals include the Mandelbrot set and

the Julia set. Usually, they are not preferred for generating useful shapes.
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Among these three, self-similar fractals are generated in the simplest way. The gener-

ation starts with an initial shape (called the initiator) and a geometric pattern (called the

generator). In each iteration of the fractal generation procedure, the subparts of the ini-

tiator is replaced (transformed) with the generator. We have already seen the working of

this approach in the preceding section, in the generation of the Koch curve. In that case,

the initiator was the straight line whereas the generator was the triangle without base

in the hat. Generation of the other two fractal types are more complex. Interested read-

ers may use the references cited at the end of Chapter 2 (Bibliographic Note) for more

information.
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C Ray-tracing

Method for

Surface

Rendering
In Chapter 4, we learnt the simple lighting model for computing color at surface points. As

we discussed, the model is based on many simplistic assumptions. For example, the assump-

tion that all surfaces are ideal reflectors, light path does not shift during refraction, or the

ambient lighting effect can be modeled by a single number. Consequently, the model is inca-

pable of producing realistic effects. What we require is a global illumination model, that is,

a model of illumination that takes into account all the reflections and refractions that affect

the color at any particular surface point. In this chapter, we shall learn about one such model

known as ray tracing. Obviously, the computational cost for implementing this model is

much higher.

C.1 RAY-TRACING: BASIC IDEA

Generating or synthesizing an image on a computer screen is equivalent to computing pixel

color values. We can view this process in a slightly different way. In a scene, there are light

rays from the surfaces emanating in all directions. Some of these rays are passing through

the screen pixels towards the viewer. Thus, a pixel color is determined by the color of the

light ray passing through it. In the ray-tracing method, we trace these rays backward—from

the viewer towards the source. The idea is illustrated in Fig. C.1.

Viewer

Pixel

Light ray (backward)

Towards source

Fig. C.1 The basic idea of ray tracing.Each original ray passing through a pixel towards the

viewer is traced backward (from viewer to source).
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C.1.1 Steps Involved

The first step in the ray-tracing method is the generation of rays (from the viewer to the light

source) passing through the pixels. These are called pixel rays. There is one pixel ray for

each pixel. Depending on the type of projection we want, the rays differ. If we are interested

in parallel projection, the rays are generated perpendicular to the view plane (screen). If per-

spective projection is required, we create rays starting from a common projection point (i.e.,

center of projection, see Chapter 6). In both the cases, rays are assumed to pass through the

pixel centers.

Next, for each pixel ray, we check if it intersects any of the surfaces present in the scene.

For this purpose, we maintain a list of all surfaces. For each member of the list, we check for

ray-surface intersection. If for a surface, an intersection is found, we calculate the distance of

the surface from the pixel. Among all those intersecting surfaces, we choose the one having

the least distance. This is the visible surface. The pixel ray used for detecting visible surface

is called the primary ray.

Once we detect the visible surface with the primary ray, we perform reflection and refrac-

tion of the primary ray. We treat the primary ray as the incident ray. At the (primary

ray–visible surface) intersection point, the primary ray is reflected along the specular reflec-

tion direction (or the ideal reflection direction; see Chapter 4). In addition, if the surface

is transparent, the ray is transmitted through the surface along the refraction direction. As

we can see, two more rays are generated off the intersection point due to the reflection and

refraction. These are called the secondary rays. We then treat each secondary ray as primary

ray and repeat the procedure recursively (i.e., determine the visible surface and generate new

secondary rays from the intersection point).

We maintain a binary ray-tracing tree to keep track of the primary and secondary rays.

Surfaces serve as nodes of the tree. The left edges denote a reflection path between the two

surfaces. Right edges denote the refraction path. The idea is illustrated in Fig. C.2. As the

Primary ray

S

S2

S3

S1

S4

R4

R2

R3

T2

T1(Refracted ray)R1(Refracted ray)

S

S2

S3

S1

S4

R4

R2

R1 T1

R3

T2

(a) (b)

Fig. C.2 The construction of a binary ray-tracing tree. In (a), we show the backward tracing

of the ray path through a scene having five surfaces. The corresponding ray-tracing tree is

shown in (b).
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figure shows, at each step of the recursive process, at most two new nodes and edges are

added to the tree. We can set the maximum depth of the tree as a user option, depending

on the available storage. The recursive process stops if any of the following conditions is

satisfied:

1. The current primary ray intersects no surface in the list.

2. The current primary ray intersects a light source, which is not a reflecting

surface.

3. The ray-tracing tree has reached its maximum depth.

At each ray–surface intersection point, we compute the intensity using a lighting model.

There are the following three components in the intensity.

Local contribution The intensity contribution due to the light source

Reflected contribution The intensity contribution due to the light that comes after

reflection from other surfaces

Transmitted contribution The intensity contribution due to the light that comes after

transmitting through the surface from the background

Thus, the total light intensity at any surface point I can be computed as,

I = Il + Ir + It (C.1)

In the equation, Il is the local contribution. We can use the simple lighting model dis-

cussed in Chapter 4 to compute it. For this calculation, we require the three vectors EN

(the surface normal at the point), EV (the vector from the surface point to the viewer, i.e.,

along the opposite direction of the primary ray), and EL (the vector from the point to the

light source). In order to determine EL, we send a ray from the intersection point towards

the light source. This ray is called the shadow ray. We check if the shadow ray inter-

sects any surface in its path. If it does, the intersection point is in shadow with respect

to the light source. Hence, we do not require calculation of actual intensity due to the

light source. Instead, we can apply some technique (e.g., ambient light/texture pattern,

see Chapter 4) to create the shadow effect. The other two components in the Eq. C.1 (Ir

and It) are calculated recursively using the steps mentioned before. The intensity value

at each intersection point is stored at the corresponding surface node position of the

ray-tracing tree.

Once the tree is complete for a pixel, we accumulate all the intensity contributions start-

ing at the leaf nodes. Surface intensity from each node is attenuated (see Chapter 4) by the

distance from the parent node and then added to the intensity of the parent surface. This

bottom-up procedure continues till we reach the root node. The root node intensity is set

as the pixel intensity. For some pixel rays, it is possible that the ray does not intersect any

surface. In that case, we assign background color to the pixel. It is also possible that, instead

of any surface, the ray intersects a (non-reflecting) light source. The light source intensity is

then assigned to the pixel.
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C.1.2 Ray–Surface Intersection Calculation

The prerequisite for the ray–surface intersection calculation is the representation of pixel

rays. How we can represent a ray? Note that a ray is not a vector. This is because a vector is

defined having a direction and a magnitude. However, in the case of a ray, it has a starting

point and a direction. Thus, we cannot use a single vector to represent it. Instead, we can use

a sum of the following two vectors to represent a ray.

1. The ray origin vector Es, which is a vector from the coordinate origin to the ray origin. The

ray origin point can be chosen as either the pixel position or the point of projection (for

perspective projection).

2. The ray direction vector Ed, which is along the ray direction. Usually, we use the unit

direction vector d̂.

In terms of these two vectors, we can represent a ray in parametric form as shown in

Eq. C.2.

Er(t) = Es + td̂, t ≥ 0 (C.2)

How to determine d̂? In the case of parallel projection, it is simply the unit normal vector

of the XY plane (view plane). For perspective projection, we require little more computation.

With respect to the coordinate origin, let us denote the point of projection by the vector EPr

and the pixel point by the vector EPx. Then, the unit vector d̂ should be along the direction

from EPr to EPx. Hence, we can compute d̂ as,

d̂ =

EPx − EPr

| EPx − EPr|
(C.3)

The various vectors for perspective projection is shown in Fig. C.3 for illustration. In

order to determine the ray–surface intersection point, we simultaneously solve the ray equa-

tion and the surface equation. This gives us a value for the parameter t from which the

intersection coordinates are determined. At each intersection point, we update Es and d̂ for

each of the secondary rays. The new Es is the vector from origin to the intersection point. For

the reflected ray, the unit vector d̂ is calculated along the specular reflection direction. For

the ray due to refraction, d̂ is determined along the refraction path.

Let us illustrate the ray–surface intersection calculation in terms of an example—

intersection of a ray with a sperical surface. Assume that the sphere center is at the point pc

Y

X
Z

Point of

projection Pixel

Vector d

Vector s

Fig. C.3 Representing a ray with the two vectors—perspective projection
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and the length of its radius is r. Then, for any point p on the surface, the surface can be

represented with the equation,

|Ep − Epc| = r (C.4)

If the ray intersects the surface, there should be a common surface point. Thus, we can

replace the point in the surface equation with the corresponding ray equation.

|Es + tEd − Epc| = r (C.5)

Next, we square both the sides in Eq. (C.5) to get,

|Es + td̂ − Epc|
2
= r2 (C.6)

After expanding and rearranging Eq. (C.6), we get

t =
−B ±

√

B2 − A.C

A
(C.7)

where, A = |d̂|2 = 1, B = (Es − Epc).d̂, and C = |Es − Epc|
2
− r2. Depending on the values of

A, B and C, we have the following scenarios:

1. If B2
− A.C < 0, there is no intersection between the surface and the ray.

2. If B2
− A.C = 0, the ray touches the surface. Clearly, there will be no secondary rays

generated in this case.

3. If B2
− A.C > 0, the ray intersects the surface. There are two possible parameter values

as per Eq. C.7.

(a) If both values are negative, there is no ray–surface intersection.

(b) If one of the values is zero and the other positive, the ray originates on the sphere and

intersects it. Usually in graphics, we are not interested in modelling such cases.

(c) If the two values differ in sign, the ray originates inside the sphere and inter-

sects it. This is again a mathematical possibility, which is usually not considered in

graphics.

(d) If both are positive, the ray intersects the sphere twice (enter and exit). The

smaller value corresponds to the intersection point that is closer to the starting

point of the ray. Thus, we take the smaller value to determine the intersection

coordinates.

C.2 REDUCING INTERSECTION CALCULATION

For commonly occurring shapes such as spheres, cubes, and splines, efficient ray–surface

intersection algorithms have been developed. However, as we can see, it takes a lot of com-

putation to check for intersections of all the pixel rays with all the surfaces present in the

scene. In fact, intersection calculations take up about 95% of the time it requires to ren-

der a scene using the ray-tracing method. Therefore, it is obvious that we try to reduce the

intersection calculations as much as possible.
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Various techniques are used in the ray-tracing method to speed up the surface rendering

process. We can broadly divide these techniques into the following two groups:

1. Bounding volume techniques

2. Spatial subdivision methods

C.2.1 Bounding Volume Techniques

In the bounding volume technique, a group of closely placed objects in the scene are

assumed to be enclosed by a bounding volume. Usually regular shapes such as spheres

or cubes are used for bounding volume. Before checking for ray–surface intersection, we

first check if the ray intersects the bounding volume. Only if the bounding volume is inter-

sected by the ray, do we go for ray–surface intersection checks for all the surfaces in the

bounding volume. Otherwise, we remove all the enclosed surfaces from further intersection

checks.

The basic bounding volume approach can be extended to the hierarchical bounding vol-

ume. In that case, we create a hierarchy of bounding volumes. The ray first checks for

intersection with the top-level bounding volume. If an intersection is found, the volumes

in the next level are checked for intersection. The process goes on till the lowest level of the

hierarchy.

C.2.2 Spatial Subdivision Methods

In the spatial subdivision approach, we enclose the entire scene within a cube. Then, we

recursively divide the cube into cells. The subdivision can proceed in either of the two ways.

Uniform subdivision At each subdivision step, we divide the current cell into eight

equal-sized octants.

Adaptive subdivision At each subdivision step, we divide the current cell only if it contains

surfaces.

The recursion continues till each cell contains no more than a predefined num-

ber of surfaces. The process is similar to the space subdivision method we dis-

cussed in Chapter 2. We can use octrees to store the subdivision. Along with

the subdivision information, information about surfaces stored in the cells are also

maintained.

First, we check for intersection of the ray with the outermost cube. Once an intersection

is detected, we check for intersection of the ray with the inner cubes (next level of subdivi-

sion) and continue in this way till we reach the final level of subdivision. We perform this

check for only those cells that contain surfaces. In the final level of subdivision, we check

for intersection of the ray with the surfaces. The first surface intersected by the ray is the

visible surface.

C.3 ANTI-ALIASED RAY TRACING

In the ray-tracing method, we take discrete samples (pixels) to depict a continuous scene.

Clearly, the phenomenon of aliasing (see Chapter 9) is an important issue in ray tracing also.
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We need some means (anti-aliasing techniques) to eliminate or reduce the effect of aliasing.

There are broadly two ways of antialiasing in ray tracing.

1. Supersampling

2. Adaptive sampling

In supersampling, each pixel is assumed to represent a finite region. The pixel region is

divided into subregions (subpixels). Instead of a single pixel ray, we now generate pixel rays

for each of these subregions and perform ray tracing. The pixel color is computed as the

average of the color values returned by all the subpixel rays.

The basic idea behind the adaptive sampling is as follows: we start with five pixel rays

for each pixel instead of one as before. Among these five, one ray is sent through the pixel

center and the remaining four rays are sent through the four corners (assuming each pixel is

represented by a square/rectangular region) of the pixel. Then we perform color computation

using the ray-tracing method for each of these five rays. If the color values returned by them

are similar, we do not divide the pixel further. However, in case the five rays return dissim-

ilar color values, we divide the pixel into a 2 × 2 subpixel grid. We then repeat the process

for each subpixel in the grid. The process terminates when a preset level of subdivision is

reached.
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